Skip to main content
Log in

Analysis of the Influence of Nonlocality on Characteristics of the Near Field of a Layered Particle on a Substrate

  • PLASMONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The problem of diffraction of the electromagnetic plane wave field on a layered nanoparticle with a metal plasmon layer on the surface of a transparent substrate is considered. Based on the discrete sources method, the influence of spatial nonlocality in a metal on the intensity of the near field and absorption cross section is studied. The cases of particle excitation both by a propagating wave and by a evanescent wave are considered. It is shown that the substrate provides a more significant influence on optical characteristics of the near field than on the intensity in the far zone. It is established that taking into account the nonlocality effect in the metal leads to a significant decrease in the plasmon resonance amplitude with a small shift to the shortwave region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Xu, X. Xiong, L. Wu, et al., Adv. Opt. Photon. 10, 703 (2018). https://doi.org/10.1364/AOP.10.000703

    Article  Google Scholar 

  2. S. Zhang, R. Geryak, J. Geldmeier, S. Kim, and V. V. Tsukruk, Chem. Rev. 117, 12942 (2017). https://doi.org/10.1021/acs.chemrev.7b00088

    Article  Google Scholar 

  3. P. K. Kalambate, Z. Dhanjai Huang, Y. Li, et al., Trends Anal. Chem. 115, 147 (2019). https://doi.org/10.1016/j.trac.2019.04.002

    Article  Google Scholar 

  4. A. Evlyukin, K. V. Nerkararyan, and S. I. Bozhevolnyi, Opt. Express 27, 17474 (2019). https://doi.org/10.1364/OE.27.017474

    Article  ADS  Google Scholar 

  5. V. I. Balykin, Phys. Usp. 61, 846 (2018). https://doi.org/10.3367/UFNe.2017.09.038206

    Article  ADS  Google Scholar 

  6. I. Sidorenko, Sh. Nizamov, R. Hergenröder, A. Zybin, et al., Microchim. Acta 183, 101 (2016). https://doi.org/10.1007/s00604-015-1599-0

    Article  Google Scholar 

  7. D. Avsar, H. Ertürk, and M. P. Mengüc, Mater. Res. Express 6, 065006 (2019). https://doi.org/10.1088/2053-1591/ab07fd

    Article  ADS  Google Scholar 

  8. M. Barbry, P. Koval, F. Marchesin, R. Esteban, et al., Nano Lett. 15, 3410 (2015). https://doi.org/10.1021/acs.nanolett.5b00759

    Article  ADS  Google Scholar 

  9. C. David and F. J. García de Abajo, J. Phys. Chem. C 115, 19470 (2011). https://doi.org/10.1021/jp204261u

    Article  Google Scholar 

  10. C. Ciraci, J. B. Pendry, and D. R. Smith, Chem. Phys. Chem. 14, 1109 (2013). https://doi.org/10.1002/cphc.201200992

    Article  Google Scholar 

  11. A. Derkachova, K. Kolwas, and I. Demchenko, Plasmonics 11, 941 (2016). https://doi.org/10.1007/s11468-015-0128-7

    Article  Google Scholar 

  12. N. A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, and S. I. Bozhevolnyi, Nat. Commun. 5, 3809 (2014). https://doi.org/10.1038/ncomms4809

    Article  ADS  Google Scholar 

  13. C. Tserkezis, N. Stefanou, M. Wubs, and N. A. Mor-tensen, Nanoscale 8, 17532 (2016). https://doi.org/10.1039/C6NR06393D

    Article  Google Scholar 

  14. M. Wubs and A. Mortensen, Quantum Plasmonics, Ed. by S. I. Bozhevolnyi (Springer, Switzerland, 2017), p. 279. https://doi.org/10.1007/978-3-319-45820-5_12

    Book  Google Scholar 

  15. E. Eremina, Y. Eremin, and T. Wriedt, J. Mod. Opt. 58, 384 (2011). https://doi.org/10.1080/09500340.2010.515751

    Article  ADS  Google Scholar 

  16. A. Doicu, Yu. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, San Diego, 2000).

    MATH  Google Scholar 

  17. N. V. Grishina, A. Yu. Eremin, and A. G. Sveshnikov, Opt. Spectrosc. 115, 136 (2013). https://doi.org/10.1134/S0030400X13070072

    Article  Google Scholar 

  18. A. Yu. Eremin and A. G. Sveshnikov, Comput. Math. Math. Phys. 59, 2164 (2019). https://doi.org/10.1134/S0965542519100063

    Article  MathSciNet  Google Scholar 

  19. Yu. Eremin, A. Doicu, and T. Wriedt, J. Quant. Spectrosc. Rad. Transf. 235, 300 (2019). https://doi.org/10.1016/j.jqsrt.2019.07.012

    Article  ADS  Google Scholar 

  20. E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981), p. 167.

  21. A. Doicu, Yu. Eremin, and T. Wriedt, J. Quant. Spectrosc. Rad. Transf. 242, 106756 (2020). https://doi.org/10.1016/j.jqsrt.2019.106756

    Article  Google Scholar 

  22. C. Jerez-Hanckes and J. C. Nédélec, Commun. Comput. Phys. 11, 629 (2012). https://doi.org/10.4208/cicp.231209.150910s

    Article  MathSciNet  Google Scholar 

  23. N. V. Grishina, A. Yu. Eremin, and A. G. Sveshnikov, Opt. Spectrosc. 113, 440 (2012). https://doi.org/10.1134/S0030400X12100049

    Article  ADS  Google Scholar 

  24. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).

    MATH  Google Scholar 

  25. N. S. Bakhvalov, Numerical Methods (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  26. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  27. N. G. Khlebtsov and B. N. Khlebtsov, J. Quant. Spectrosc. Rad. Transf. 190, 89 (2017). https://doi.org/10.1016/j.jqsrt.2017.01.027

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-01-00558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Eremin.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y.A. Analysis of the Influence of Nonlocality on Characteristics of the Near Field of a Layered Particle on a Substrate. Opt. Spectrosc. 128, 1500–1507 (2020). https://doi.org/10.1134/S0030400X20090088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20090088

Keywords:

Navigation