Skip to main content
Log in

Photoinduced Absorption and Pulsed Recording of Dynamic Holograms in Bismuth Silicate Crystals

  • HOLOGRAPHY
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The dynamics of photoinduced absorption and holographic-grating recording in photorefractive crystals of bismuth silicate is studied. It is shown that, with the use of nanosecond laser pulses and of the intensity on the order of 1 MW/cm2 or higher, the induced absorption due to population of the short-lived trapping levels, with characteristic relaxation times about several milliseconds or tens of milliseconds, is the case. Recording of dynamic holograms has been realized in these conditions in bismuth silicate crystals. Two mechanisms of holographic-grating recording, with the lifetimes differing by three orders of magnitude, are established. At relatively low intensities, about 1 MW/cm2 or lower, the medium response is determined by a photorefractive mechanism of nonlinearity, with relaxation times of several seconds. At the intensities exceeding 5 MW/cm2, one can observe a fast (ms relaxation times) component that may be associated with population of the short-lived traps. It is shown that the contribution of each mechanism is greatly dependent on the intensity of laser radiation and, for the intensities above 10–15 MW/cm2, the short-lived traps having millisecond lifetimes play the decisive role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  2. D. C. Jones, S. F. Lyuksyutov, and L. Solymar, Appl. Phys. B 52, 173 (1991). https://doi.org/10.1007/bf00750947

    Article  ADS  Google Scholar 

  3. K. Buse, Appl. Phys. B 64, 273 (1997). https://doi.org/10.1007/s003400050175

    Article  ADS  Google Scholar 

  4. N. I. Nazhestkina, A. A. Kamsyilin, O. V. Kobozev, and V. V. Prokofiev, Appl. Phys. B 72, 767 (2001).

    Article  ADS  Google Scholar 

  5. Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Ego-ryshev, Bi12SixO20-δCrystals with Sillenite Structure. Synthesis, Structure, Properties (IOKhN RAN, Moscow, 2004) [in Russian].

  6. S. M. Shandarov, N. I. Burimov, Yu. N. Kul’chin, R. V. Romashko, A. L. Tolstik, and V. V. Shepelevich, Quantum Electron. 38, 1059 (2008). https://doi.org/10.1070/qe2008v038n11abeh013793

    Article  ADS  Google Scholar 

  7. Pochi Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

    Google Scholar 

  8. S. Wevering, J. Imbrock, and E. Kratzig, J. Opt. Soc. Am. B 18, 472 (2001). https://doi.org/10.1364/josab.18.000472

    Article  ADS  Google Scholar 

  9. A. Matusevich, A. Tolstik, M. Kisteneva, S. Shandarov, V. Matusevich, A. Kiessling, and R. Kowarschik, Appl. Phys. B 92, 219 (2008). https://doi.org/10.1007/s00340-008-3098-z

    Article  ADS  Google Scholar 

  10. A. Matusevich, A. Tolstik, M. Kisteneva, S. Shandarov, V. Matusevich, A. Kiessling, and R. Kowarschik, Appl. Phys. B 96, 119 (2009). https://doi.org/10.1007/s00340-009-3512-1

    Article  ADS  Google Scholar 

  11. M. G. Kisteneva, A. S. Akrestina, D. O. Sivun, R. V. Kiselev, S. M. Shandarov, S. V. Smirnov, A. L. Tolstik, I. N. Agishev, A. V. Stankevich, and Yu. F. Kargin, Dokl. Tomsk.Univ., Sist. Upravl. Radioelektron. 22 (2), 62 (2010).

    Google Scholar 

  12. E. S. Khudyakova, M. G. Kisteneva, S. M. Shandarov, T. A. Kornienko, A. L. Tolstik, and Yu. F. Kargin, Radiophys. Quantum Electron. 57, 589 (2015). https://doi.org/10.1007/s11141-015-9543-z

    Article  ADS  Google Scholar 

  13. T. Kornienko, M. Kisteneva, S. Shandarov, and A. Tolstik, Phys. Proc. 86, 105 (2017). doi j.phpro.2017.01.029

  14. A. L. Tolstik, A. Yu. Matusevich, M. G. Kisteneva, S. M. Shandarov, S. I. Itkin, A. E. Mandel’, Yu. F. Kargin, Yu. N. Kul’chin, and R. V. Romashko, Quantum Electron. 37, 1027 (2007). https://doi.org/10.1070/qe2007v037n11abeh013371

    Article  ADS  Google Scholar 

  15. J. P. Hermann, J. P. Herriau, and J. P. Huignard, Appl. Opt. 20, 2173 (1981). https://doi.org/10.1364/AO.20.002173

    Article  ADS  Google Scholar 

  16. J. P. Partanen, P. Nouchi, J. M. C. Jonathan, and R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991). https://doi.org/10.1103/physrevb.44.1487

    Article  ADS  Google Scholar 

  17. J. G. Murillo, Opt. Commun. 159, 293 (1999). https://doi.org/10.1016/s0030-4018(98)00610-5

    Article  ADS  Google Scholar 

  18. A. V. Stankevich, A. L. Tolstik, and H. K. Haider, Tech. Phys. Lett. 37, 746 (2011). https://doi.org/10.1134/s1063785011080268

    Article  ADS  Google Scholar 

  19. A. L. Tolstik and Kh. K. Khanon, Vestn. Belorus. Univ., Ser. 1: Fiz. Mat. Inform., No. 2, 3 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Tolstik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadenkov, I.G., Tolstik, A.L., Miksyuk, Y.I. et al. Photoinduced Absorption and Pulsed Recording of Dynamic Holograms in Bismuth Silicate Crystals. Opt. Spectrosc. 128, 1401–1406 (2020). https://doi.org/10.1134/S0030400X20090052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20090052

Keywords:

Navigation