Skip to main content
Log in

A Backward Zenneck Wave Propagating along a Plane Interface between Media

  • PHYSICAL OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We consider a surface Zenneck wave that propagates along a plane interface between a vacuum and a medium that is described by an isotropic dielectric permittivity and a surface Zenneck wave that propagates along a plane interface between a vacuum and a medium that is described by isotropic dielectric permittivity and magnetic permeability. In the latter case, we also consider an H wave and the possibility that the real parts of the permittivity and permeability are negative. Forward and backward waves at the boundary of a material with inhomogeneous profiles of the dielectric permittivity and magnetic permeability are considered. The conditions of the existence of forward and backward surface and volume waves, as well as of fast and slow surface waves are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Lamb, Proc. London Math. Soc., Ser. 2 1 (849), 473 (1904). https://doi.org/10.1112/plms/s2-1.1.473

    Article  Google Scholar 

  2. P. Tournois and V. Laude, Opt. Commun. 137, 41 (1997).

    Article  ADS  Google Scholar 

  3. Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, Proc. SPIE 6323, 63231M (2006). https://doi.org/10.1117/12.681492

    Article  ADS  Google Scholar 

  4. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, Quantum Electron. 39, 745 (2009). https://doi.org/10.1070/QE2009v039n08ABEH014072

    Article  ADS  Google Scholar 

  5. A. Sommerfeld, Ann. Phys. 303, 233 (1899).

    Article  Google Scholar 

  6. J. Zenneck, Ann. Phys. 23, 846 (1907).

    Article  Google Scholar 

  7. V. V. Shevchenko, Phys. Usp. 50, 287 (2007). https://doi.org/10.1070/PU2007v050n03ABEH006243

    Article  ADS  Google Scholar 

  8. V. P. Makarov and A. A. Rukhadze, Phys. Usp. 54, 1285 (2011). https://doi.org/10.3367/UFNe.0181.201112n.1357

    Article  ADS  Google Scholar 

  9. M. V. Davidovich, Flowing and Flowing Improper Modes—Analysis of Dissipative Dispersion Equations and the Zenneck Wave (Sarat. Univ., Saratov, 2014) [in Russian].

    Google Scholar 

  10. L. A. Vainshtein, Electromagnetic Waves (Radio Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  11. A. Norrman, T. Setälä, and A. T. Friberg, Opt. Lett. 38, 1119 (2013). https://doi.org/10.1364/OL.38.001119

    Article  ADS  Google Scholar 

  12. V. V. Shevchenko, J. Commun. Technol. Electron. 60, 335 (2015). https://doi.org/10.7868/S0033849415040130

    Article  Google Scholar 

  13. M. V. Davidovich, J. Commun. Technol. Electron. 63, 497 (2018). https://doi.org/10.1134/S1064226918060050

    Article  Google Scholar 

  14. V. V. Shevchenko, J. Commun. Technol. Electron. 49, 639 (2004).

    Google Scholar 

  15. M. V. Davidovich, Izv. Sarat. Univ., Nov. Ser., Ser. Fiz. 19, 288 (2019). https://doi.org/10.18500/1817-30202019-19-4-288-303

    Article  Google Scholar 

  16. P. A. Belov, K. R. Simovskii, and S. A. Tretyakov, J. Commun. Technol. Electron. 49, 1199 (2004).

    Google Scholar 

  17. M. V. Davidovich, JETP Lett. 108, 279 (2018). https://doi.org/10.1134/S0370274X18170010

    Article  ADS  Google Scholar 

  18. M. V. Davidovich and P. A. Shilovskii, Geterom. Elektron., No. 13, 45 (2012).

  19. M. V. Davidovich, J. V. Stephuk, and P. A. Shilovskii, Tech. Phys. 57, 320 (2012). https://doi.org/10.1134/S1063784212030036

    Article  Google Scholar 

  20. A. P. Vinogradov, Phys. Usp. 45, 331 (2002). https://doi.org/10.1070/PU2002v045n03ABEH001079

    Article  ADS  Google Scholar 

  21. A. P. Vinogradov, A. V. Dorofeenko, and S. Zouhdi, Phys. Usp. 51, 485 (2008). https://doi.org/10.1070/PU2008v051n05ABEH006533

    Article  ADS  Google Scholar 

  22. C. R. Simovski, Opt. Spectrosc. 107, 726 (2009). https://doi.org/10.1134/S0030400X09110101

    Article  Google Scholar 

  23. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, Phys. Usp. 53, 243 (2010). https://doi.org/10.3367/UFNe.0180.201003b.0249

    Article  ADS  Google Scholar 

  24. M. V. Davidovich, Phys. Usp. 62, 1173 (2019).

    Article  Google Scholar 

  25. A. N. Lagar’kov, V. N. Kisel’, and V. N. Semenenko, J. Commun. Technol. Electron. 57, 1122 (2012). https://doi.org/10.1134/S106422691206006X

    Article  Google Scholar 

Download references

Funding

This work was partially financially supported by the Ministry of Education and Science of the Russian Federation in the framework of the project part of the state assignment in the field of scientific activity no. 3.1155.2014/K and by the Russian Science Foundation, project no. 16-19-10033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. A Backward Zenneck Wave Propagating along a Plane Interface between Media. Opt. Spectrosc. 128, 1379–1387 (2020). https://doi.org/10.1134/S0030400X20090064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20090064

Keywords:

Navigation