Skip to main content
Log in

Determination of the Porosity of Silicon Dioxide Microparticles by the Method of Refractive Index Matching

  • PHYSICAL OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The porosity of silica microparticles synthesized by the Stöber–Fink–Bohn method was determined by the method of refractive index matching. The values of the total porosity of particles for different transmission radiation wavelengths are obtained. The limits of applicability of the method, which are associated with the ratio of the radiation wavelength to the size of microparticles, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. N. Postnov, E. B. Naumysheva, D. V. Korolev, and M. M. Galagudza, Bioelektron. Biosens., No. 6 (30), 16 (2013).

  2. J. R. Kettman, T. Davies, D. Chandler, K. G. Oliver, and R. J. Fulton, Cytometry 33, 234 (1998). https://doi.org/10.1002/(SICI)1097-0320(19981001)33:2<234::AID-CYTO19>3.0.CO;2-V

    Article  Google Scholar 

  3. Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, Phys. Med. Biol. 46, 167 (2001). https://doi.org/10.1088/0031-9155/46/1/312

    Article  Google Scholar 

  4. M. A. Kozubova, V. B. Balashov, and V. I. Yurchenko, Izv. Vyssh. Uchebn. Zaved., Fiz. 58 (8/2), 132 (2015).

  5. J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, Nucl. Instrum. Methods Phys. Res., Sect. B 242, 182 (2006). doi org/https://doi.org/10.1016/j.nimb.2005.08.160

  6. K. J. Vahala, Nature (London, U.K.) 424, 839 (2003). https://doi.org/10.1038/nature01939

    Article  ADS  Google Scholar 

  7. D. A. Eurov, D. A. Kurdyukov, E. Y. Trofimova, S. A. Yakovlev, L. V. Sharonova, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 55, 1718 (2013). https://doi.org/10.1134/S1063783413080106

    Article  ADS  Google Scholar 

  8. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12, 693 (2000). https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J

    Article  Google Scholar 

  9. I. I. Tarhan, M. R. Zinkin, and G. H. Watson, Opt. Lett. 20, 1571 (1995). doi org/https://doi.org/10.1364/OL.20.001571

  10. I. I. Tarhan and G. H. Watson, Phys. Rev. Lett. 76, 315 (1996). https://doi.org/10.1103/PhysRevLett.76.315

    Article  ADS  Google Scholar 

  11. Y. Cai, Y. Chen, X. Hong, Z. Liu, and W. Yuan, Int. J. Nanomed. 8, 1111 (2013). doi.org/https://doi.org/10.2147/IJN.S41271

    Article  Google Scholar 

  12. S. G. Orlovskaya, V. V. Kalinchak, O. N. Zui, and L. I. Ryabchuk, Sovrem. Nauka: Issled., Idei, Rezul’t., Tekhnol., No. 2 (7), 71 (2011).

  13. G. Crotts and T. G. Park, J. Control Release 35, 91 (1995). https://doi.org/10.1016/0168-3659(95)00010-6

    Article  Google Scholar 

  14. V. I. Belotelov and A. K. Zvezdin, Photonic Crystals and other Metamaterials (Byuro Kvantum, Moscow, 2006) [in Russian].

    Google Scholar 

  15. http://studopedia.info/5-118004.html.

  16. T. B. Si, Y. X. Wang, W. Wei, P. Lv, G. Ma, and Z. Su, React Funct. Polym. 71, 728 (2011). https://doi.org/10.1016/j.reactfunctpolym.2011.04.003

    Article  Google Scholar 

  17. G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 97, 157402 (2006). https://doi.org/10.1103/PhysRevLett.97.157402

    Article  ADS  Google Scholar 

  18. P. Zijlstra, K. L. v. d. Molen, and A. P. Mosk, Appl. Phys. Lett. 90, 161101 (2007). https://doi.org/10.1063/1.2722695

  19. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. V. Blaaderen, P. V. Oostrum, and D. G. Grier, Opt. Express 15, 18275 (2007).https://doi.org/10.1364/OE.15.018275

    Article  ADS  Google Scholar 

  20. V. P. Maltsev, A. V. Chernyshev, K. A. Sem’yanov, and E. Soini, Meas. Sci. Technol. 8, 1023 (1997). https://doi.org/10.1088/0957-0233/8/9/011

    Article  ADS  Google Scholar 

  21. V. B. Tatarsky, Crystal Optics and Immersion Mineral Research Method (Nedra, Moscow, 1965) [in Russian].

    Google Scholar 

  22. I. Niskanen, K. Hibino, and J. Räty, Talanta 149, 225 (2016). https://doi.org/10.1016/j.talanta.2015.11.051

    Article  Google Scholar 

  23. M. Stohr, K. Roth, and B. Jähne, Exp. Fluids 35, 159 (2003). https://doi.org/10.1007/s00348-003-0641-x

    Article  Google Scholar 

  24. W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  ADS  Google Scholar 

  25. G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973). https://doi.org/10.1364/AO.12.000555

  26. R. D. Birkhoff, L. R. Painter, and J. M. Heller, J. Chem. Phys. 69, 4185 (1978). https://doi.org/10.1063/1.437098

  27. J. Rheims, J. Köser, and T. Wriedt, Meas. Sci. Technol. 8, 601 (1997). https://doi.org/10.1088/0957-0233/8/6/003

  28. F. García-Santamaría, Photonic Crystals Based on Silica Microspheres. http://luxrerum.icmm.csic.es/pdfs/Theses/ThesisFloren.pdf.

  29. H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

    Google Scholar 

  30. W. Wildner and D. Drummer, J. Compos. Mater. 52, 4231 (2018). https://doi.org/10.1177/0021998318778889

    Article  ADS  Google Scholar 

  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, Weinheim, 1983).

    Google Scholar 

  32. F. García-Santamaría, H. Míguez, M. Ibisate, F. Meseguer, and C. López, Langmuir 18, 1942 (2002). https://doi.org/10.1021/la010813g

    Article  Google Scholar 

  33. S. Wiederseiner, N. Andreini, G. Epely-Chauvin, and C. Ancey, Exp. Fluids 50, 1183 (2011). https://doi.org/10.1007/s00348-010-0996-8

    Article  Google Scholar 

  34. N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, J. Phys. Chem. 119, 1 (2015). https://doi.org/10.1021/acs.jpcb.5b05433

    Article  Google Scholar 

  35. V. M. Masalov, N. S. Sukhinina, and G. A. Emel’chenko, Inst. Fiz. Tverd. Tela RAN 2, 376 (2011);

    Google Scholar 

  36. V. M. Masalov, N. S. Sukhinina, and G. A. Emel’chenko, Phys. Solid State 53, 1135 (2011). https://doi.org/10.1134/S1063783411060229

    Article  ADS  Google Scholar 

  37. D. V. Kamashev, Vestn. Otdel. Nauk Zemle RAN, No. 1, 24 (2006).

    Google Scholar 

  38. I. A. Karpov, E. N. Samarov, V. M. Masalov, S. I. Bozhko, and G. A. Emel’chenko, Phys. Solid State 47, 347 (2005).

    Article  ADS  Google Scholar 

  39. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950). https://doi.org/10.1021/ja01167a001

    Article  Google Scholar 

  40. G. H. Bogush and C. F. Zukoski, J. Colloid Interface Sci. 142, 19 (1991). https://doi.org/10.1016/0021-9797(91)90030-C

  41. A. P. Philipse, Colloid Polym. Sci. 266, 1174 (1988). https://doi.org/10.1007/BF01414407

  42. K. D. Keefer and D. W. Schaefer, Phys. Rev. Lett. 56, 2199 (1986). https://doi.org/10.1103/PhysRevLett.56.2199

  43. A. van Blaaderen and A. S. Vrij, J. Colloid Interface Sci. 156, 1 (1993). https://doi.org/10.1006/jcis.1993.1073

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Gainutdinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmadeev, A.A., Gainutdinov, A.R., Khamadeev, M.A. et al. Determination of the Porosity of Silicon Dioxide Microparticles by the Method of Refractive Index Matching. Opt. Spectrosc. 128, 1388–1392 (2020). https://doi.org/10.1134/S0030400X20090027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20090027

Keywords:

Navigation