Skip to main content
Log in

Specific Features of Spectrally Resolved Thermoluminescence in UV-Irradiated Aluminum Nitride Microcrystals

  • OPTICAL MATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The mechanisms of photo- and thermoluminescence processes in cation-deficient submicron AlN crystals after UV excitation are studied. The observed emission spectra represent a superposition of bands peaking at 3.0 and 2.5 eV. These spectral features are related to electronic transitions with participation of ON impurity centers and oxygen–vacancy centers of the VAl–ON type. According to a quantitative analysis within the general-order kinetics formalism, charge carrier trapping centers based on nitrogen vacancies VN have an activation energy of 0.45 eV and are responsible for the formation of a thermally activated peak at a temperature of 345 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. T. Oyama, The Chemistry of Transition Metal Carbides and Nitrides (Springer, Blackie Acad. Profess., London, 1996), p. 28.

  2. C. Giordano and M. Antonietti, Nano Today 6, 366 (2011). https://doi.org/10.1016/j.nantod.2011.06.002

    Article  Google Scholar 

  3. A. S. Vokhmintsev, I. A. Weinstein, and D. M. Spiridonov, J. Lumin. 132, 2109 (2012). https://doi.org/10.1016/j.jlumin.2012.03.066

    Article  Google Scholar 

  4. A. S. Vokhmintsev, I. A. Weinstein, D. M. Spiridonov, D. A. Beketov, and A. R. Beketov, Tech. Phys. Lett. 38, 160 (2012). https://doi.org/10.1134/S1063785012020319

    Article  ADS  Google Scholar 

  5. A. Vokhmintsev, I. Weinstein, and D. Spiridonov, Phys. Status Solidi C 10, 457 (2013). https://doi.org/10.1002/pssc.201200519

    Article  ADS  Google Scholar 

  6. A. Mogilatenko, A. Knauer, U. Zeimer, C. Netzel, J. Jeschke, R. S. Unger, C. Hartmann, J. Wollweber, A. Dittmar, U. Juda, M. Weyers, and M. Bickermann, J. Cryst. Growth 505, 69 (2019). https://doi.org/10.1016/j.jcrysgro.2018.10.021

    Article  ADS  Google Scholar 

  7. G. Demol, T. Paulmier, and D. Payan, J. Appl. Phys. 125, 025110 (2019). https://doi.org/10.1063/1.5066434

    Article  ADS  Google Scholar 

  8. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London, U.K.) 441 (7091), 325 (2006). https://doi.org/10.1038/nature04760

    Article  ADS  Google Scholar 

  9. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, Opt. Lett. 38, 2810 (2013). https://doi.org/10.1364/OL.38.002810

    Article  ADS  Google Scholar 

  10. L. Shen, W. Lv, N. Wang, L. Wu, D. Qi, Y. Ma, and W. Lei, CrystEngComm. 19, 5940 (2017). https://doi.org/10.1039/C7CE01335C

    Article  Google Scholar 

  11. S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, Prog. Quantum Electron. 44, 14 (2015). https://doi.org/10.1016/j.pquantelec.2015.11.001

    Article  ADS  Google Scholar 

  12. K. Genji and T. Uchino, Appl. Phys. Lett. 109, 021113 (2016). https://doi.org/10.1063/1.4958891

    Article  ADS  Google Scholar 

  13. I. A. Weinstein, A. S. Vokhmintsev, D. V. Chaikin, and Yu. D. Afonin, Opt. Mater. 61, 111 (2016). https://doi.org/10.1016/j.optmat.2016.05.054

    Article  ADS  Google Scholar 

  14. L. Shen, X. Zhang, J. Song, F. Li, and D. Qi, J. Mater. Sci.-Mater. Electron. 27, 12017 (2016). https://doi.org/10.1007/s10854-016-5349-9

    Article  Google Scholar 

  15. H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, Appl. Phys. Lett. 79, 1489 (2001). https://doi.org/10.1063/1.1402649

    Article  ADS  Google Scholar 

  16. O. J. Gregory, A. B. Slot, P. S. Amons, and E. E. Crisman, Surf. Coat. Technol. 88, 79 (1997). https://doi.org/10.1016/S0257-8972(96)02889-7

    Article  Google Scholar 

  17. K. Tsubouchi and N. Mikoshiba, IEEE Trans. Son. Ultrason. 32, 634 (1985). https://doi.org/10.1109/T-SU.1985.31647

    Article  ADS  Google Scholar 

  18. S. Fujieda, M. Mizuta, and Y. Matsumoto, Adv. Mater. Opt. Electron. 6, 127 (1996). https://doi.org/10.1002/(SICI)1099-0712(199605)6:3<127::AID-AMO228>3.0.CO;2-F

    Article  Google Scholar 

  19. J. Liu, X. Zhang, Y. Zhang, R. He, and J. Zhu, J. Mater. Res. 16, 3133 (2001). https://doi.org/10.1557/JMR.2001.0432

    Article  ADS  Google Scholar 

  20. Y. Zhang, J. Liu, R. He, Q. Zhang, X. Zhang, and J. Zhu, Chem. Mater. 13, 3899 (2001). https://doi.org/10.1021/cm001422a

    Article  Google Scholar 

  21. V. N. Tondare, C. Balasubramanian, S. V. Shende, D. S. Joag, V. P. Godbole, S. V. Bhoraskar, and M. Bhadbhade, Appl. Phys. Lett. 80, 4813 (2002). https://doi.org/10.1063/1.1482137

    Article  ADS  Google Scholar 

  22. M. Bickermann, B. M. Epelbaum, O. Filip, P. Heimann, S. Nagata, and A. Winnacker, Phys. Status Solidi B 246, 1181 (2009). https://doi.org/10.1002/pssb.200880753

    Article  ADS  Google Scholar 

  23. L. Shen, N. Wang, and X. Xiao, Mater. Lett. 94, 150 (2013). https://doi.org/10.1016/j.matlet.2012.12.042

    Article  Google Scholar 

  24. R. K. Choudhary, A. Soni, P. Mishra, D. R. Mishra, and M. S. Kulkarni, J. Lumin. 155, 32 (2014). https://doi.org/10.1016/j.jlumin.2014.06.016

    Article  Google Scholar 

  25. A. S. Vokhmintsev, I. A. Weinstein, D. V. Chaikin, D. M. Spiridonov, and Yu. D. Afonin, Funct. Mater. 21, 21 (2014). https://doi.org/10.15407/fm21.01.021

    Article  Google Scholar 

  26. D. V. Chaikin, Yu. D. Afonin, I. A. Weinstein, A. S. Vokhmintsev, and D. B. Shulgin, RF Patent Application No. 2019112096 (2018).

  27. D. M. Spiridonov, I. A. Weinstein, D. V. Chaikin, A. S. Vokhmintsev, Yu. D. Afonin, and A. V. Chukin, Rad. Meas. 122, 91 (2019). https://doi.org/10.1016/j.radmeas.2019.02.001

    Article  Google Scholar 

  28. A. S. Vokhmintsev, M. G. Minin, D. V. Chaykin, and I. A. Weinstein, Instrum. Exp. Tech. 57, 369 (2014). https://doi.org/10.1134/S0020441214020328

    Article  Google Scholar 

  29. A. S. Vokhmintsev, M. G. Minin, A. M. A. Henaish, and I. A. Weinstein, Measurement 66, 90 (2015). https://doi.org/10.1016/j.measurement.2015.01.012

    Article  Google Scholar 

  30. D. V. Chaikin, D. M. Spiridonov, A. S. Vokhmintsev, N. A. Martemyanov, and I. A. Weinstein, AIP Conf. Proc. 2174, 020091 (2019). https://doi.org/10.1063/1.5134242

    Article  Google Scholar 

  31. A. M. Gurvich, Introduction to the Physical Chemistry of Crystallophosphorus, The School-Book (Vysshaya Shkola, Moscow, 1971) [in Russian].

    Google Scholar 

  32. J. Pastrňák, S. Pačesová, and L. Roskovcová, Czech. J. Phys. 24, 1149 (1974).

    Article  ADS  Google Scholar 

  33. S. B. Thapa, J. Hertkorn, F. Scholz, G. M. Prinz, R. A. R. Leute, M. Feneberg, K. Thonke, R. Sauer, O. Klein, J. Biskupek, and U. Kaiser, J. Cryst. Growth 310, 4939 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.091

    Article  ADS  Google Scholar 

  34. K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 222108 (2005). https://doi.org/10.1063/1.1943489

    Article  ADS  Google Scholar 

  35. T. Koyama, M. Sugawara, T. Hoshi, A. Uedono, J. F. Kaeding, R. Sharma, S. Nakamura, and S. F. Chichibu, Appl. Phys. Lett. 90, 241914 (2007). https://doi.org/10.1063/1.2748315

    Article  ADS  Google Scholar 

  36. T. Koppe, H. Hofsäss, and U. Vetter, J. Lumin. 178, 267 (2016). https://doi.org/10.1016/j.jlumin.2016.05.055

    Article  Google Scholar 

  37. Y. G. Cao, X. L. Chen, Y. C. Lan, J. Y. Li, Y. P. Xu, T. Xu, Q. L. Liu, and J. K. Liang, J. Cryst. Growth 213, 198 (2000). https://doi.org/10.1016/S0022-0248(00)00379-1

    Article  ADS  Google Scholar 

  38. I. A. Weinstein, A. S. Vokhmintsev, and D. M. Spiridonov, Diamond Relat. Mater. 25, 59 (2012). https://doi.org/10.1016/j.diamond.2012.02.004

    Article  ADS  Google Scholar 

  39. J. C. Nappé, M. Benabdesselam, Ph. Grosseau, and D. Guilhot, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 100 (2011). https://doi.org/10.1016/j.nimb.2010.10.025

    Article  Google Scholar 

  40. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).

    Book  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. FEUZ-2020-0059), the Russian Foundation for Basic Research (project no. 18-32-00550), and Decree of the Government of the Russian Federation no. 211 (contract no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Weinstein.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, D.M., Chaikin, D.V., Martemyanov, N.A. et al. Specific Features of Spectrally Resolved Thermoluminescence in UV-Irradiated Aluminum Nitride Microcrystals. Opt. Spectrosc. 128, 1430–1434 (2020). https://doi.org/10.1134/S0030400X20090210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20090210

Keywords:

Navigation