Skip to main content

Advertisement

Log in

Impact of Lithofacies and Structures on the Hydrogeochemistry of the Lower Miocene Aquifer at Moghra Oasis, North Western Desert, Egypt

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Moghra Oasis is one of the major Egyptian desert-reclamation projects. Understanding the hydrochemistry of the Moghra aquifer is an onus to properly plan and manage the agricultural activities in the North Western desert of Egypt. The basic geologic structure of the area under study was deduced from a detailed land magnetic survey. The resulted magnetic field map was analyzed using different filtering techniques and tomographic inversion. Field observation, stratigraphic setting, sedimentological studies, microfacies analyses and lithologic log of the studied wells were integrated to detect the lithofacies characteristics of the Moghra aquifer. Strong vertical and lateral variations of channel-fill and flat-laminated lithofacies beside several types of diagenetic processes caused the heterogeneity of the Moghra aquifer. The direction of groundwater flow in the heterogeneous Moghra aquifer is controlled by a fault system deduced from the magnetic study. Twenty groundwater samples from around Moghra Lake were collected and were analyzed hydrochemically for major ions and trace elements. The microfacies analysis (primary components and diagenetic processes), spatial variance in pH and ions concentrations, statistical and hydrogeochemical classifications, ionic ratios and relationships and saturation indices were helpful to understand the groundwater hydrogeochemical processes. The main hydrochemical type was Na–Cl. Ion-exchange due to seawater intrusion, sulfate ion reduction, iron-oxides reduction and mineral dissolution were the detected water–rock interaction processes. Dolomite precipitation was also proven. Iron oxides, quartz and carbonate minerals precipitation in the upper saline groundwater were expected. More mineral dissolution for evaporate minerals, silicate minerals and carbonate minerals in the lower saline groundwater is expected to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Abdel Mogith, S. M., Sawsan, M. M. I., & Ragab, A. H. (2013). Groundwater potentials and characteristics of El-Moghra aquifer in the vicinity of Qattara Depression. Egyptian Journal of Desert Research, 62(63), 1–20.

    Google Scholar 

  • Abdel-Shafy, H., & Aly, R. O. (2002). Water issue in Egypt: Resources, pollution and protection endeavors. Central European Journal of Medicine, 8, 1–21.

    Google Scholar 

  • Alexakis, D. (2011). Assessment of water quality in the Messolonghi-Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environmental Monitoring and Assessment, 182, 397–413.

    Google Scholar 

  • Alfarrah, N., & Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10, 143.

    Google Scholar 

  • Al-Garni, M. A., & Gobashy, M. M. (2010). Ground magnetic investigation of subsurface structures affecting Wadi Thuwal area, KSA. Journal of King Abdulaziz University: Earth Sciences. https://doi.org/10.4197/Ear.21-2.7.

    Article  Google Scholar 

  • Al-Omran, M. A., El-Maghraby, S. E., Aly, A. A., Al-Wabel, I. M., Al-Asmari, Z. A., & Nadeem, M. E. (2012). Quality assessment of various bottled waters marketed in Saudi Arabia. Environmental Monitoring and Assessment, 185, 6397–6406.

    Google Scholar 

  • Aly, A. A., Abbas, A. A., & Benaabidate, L. (2011). Hydrochemistry and quality of groundwater resources in Egypt: Case study of the Egyptian Southern Oases. In A. Scozzari & B. El Mansouri (Eds.), Water security in the Mediterranean Region. NATO Science for Peace and Security Series C: Environmental Security. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-1623-0_17.

    Chapter  Google Scholar 

  • Aly, A. I. M., Nada, A., Awad, M., Hamza, M. S., & Salman, A. B. (1989). Isotope hydrological investigation on Qattara Depression, Egypt. Isotopenpraxis Isotopes in Environmental and Health Studies, 25(1), 22–24.

    Google Scholar 

  • Aly, A. I. M., Nada, A., Awad, M., Salman, A. B., & Hamza, M. S. (1988). Isotope hydrological investigation of Moghra and Ain El-Sharip environment, Northwestern Desert, Egypt. Isotope and Radiation Research, 20, 33–41.

    Google Scholar 

  • Apaydin, A. (2010). Relation of tectonic structure to groundwater flow in the Beypazari region, NW Anatolia, Turkey. Hydrogeology, 18(6), 1343–1356.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Leiden: A.A. Balkema Publishers.

    Google Scholar 

  • Appelo, C. A. J., Willemsen, A., Beekman, H. E., & Griffioen, J. (1990). Geochemical calculations and observations on salt water intrusions, II. Journal of Hydrology, 120, 225–250.

    Google Scholar 

  • Arnous, M. O., El-Rayes, A. E., & Helmy, A. M. (2017). Land-use/land-cover change: A key to understanding land degradation and relating environmental impacts in Northwestern Sinai, Egypt. Environmental Earth Sciences, 76, 263–283.

    Google Scholar 

  • Banerjee, A. (2016). Estimation of dolomite formation: Dolomite precipitation and dolomitization. Journal Geological Society of India, 87, 561–572.

    Google Scholar 

  • Barker, A. P., Newton, R. J., & Bottrell, S. H. (1998). Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Applied Geochemistry, 13(6), 735–749.

    Google Scholar 

  • Barzegar, R., Moghaddam, A. A., & Tziritis, E. (2017). Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran. Applied Water Science, 7, 3997–4011.

    Google Scholar 

  • Belkhiri, L., & Mouni, L. (2012). Hydrochemical analysis and evaluation of groundwater quality in El Eulma area, Algeria. Applied Water Science, 2, 127–133.

    Google Scholar 

  • Cai, C. F., Worden, R. H., Bottrell, S. H., Wang, L. S., & Yang, C. C. (2003). Thermochemical sulfate reduction and the generation of hydrogen sulfide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China. Chemical Geology, 202, 39–57.

    Google Scholar 

  • Carol, E. S., & Kruse, E. E. (2012). Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata estuary, Argentina. Journal of South American Earth Sciences, 37, 113–121.

    Google Scholar 

  • Chenini, I., Farhat, B., & Ben Mammou, A. (2010). Identification of major sources controlling groundwater chemistry from a multilayered aquifer system. Chemical Speciation and Bioavailability, 22(3), 183–189.

    Google Scholar 

  • Chidambaram, S., Karmegam, U., Prasanna, M. V., Sasidhar, P., & Vasanthavigar, M. (2011). A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, Southern India. Environmental Earth Sciences, 64, 1419–1431.

    Google Scholar 

  • Cirkel, D. G., Van Beek, C. G. E. M., Witte, J. P. M., & Van der Zee, S. E. A. T. M. (2014). Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens. Biogeochemistry, 117, 375–393.

    Google Scholar 

  • Conoco. (1987). Geologic map of Egypt. Egyptian general authority for petroleum (UNESCO Joint Map Project), 20 Sheets, Scale 1:500 000. Cairo.

  • Cooper, G. R. J., & Cowan, D. R. (2011). A generalized derivative operator for potential field data. Geophysical Prospecting, 59, 188–194.

    Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime (pp. 179–188). Geological Society of India, [S.l.], ISSN 0974-6889. http://www.geosocindia.org/index.php/jgsi/article/view/68175.

  • Deborah, C. (1996). Water quality assessments—A guide to use of biota, sediments and water in environmental monitoring (2nd ed.). Cambridge: Great Britain at the University Press. ISBN 0 419 21590 5 (HB).

  • Djorfi, S., Djorfi, S., Beloulou, L., Djidel, M., & Guechi, S. (2018). Hydrochemical evolution of groundwater in the Tamlouka Plain, influence of lithology, geomorphology and anthropogenic actions. In Proceedings of Euro-Mediterranean conference for environmental integration (EMCEI-1), Sousse (pp. 685–687).

  • El Sabri, M. A. S., Ezzeldin, H. A., Yousf, A. F., & Salem, W. M. (2016). Groundwater origin and management in Moghra Oasis and its vicinities, Qattara Depression, Western Desert, Egypt. Egyptian Journal of Geology, 60, 97–118.

    Google Scholar 

  • Elango, L., & Ramasubramanian, K. (2007). Chapter 11 Rock–water interaction and its control on chemical composition of groundwater. Developments in Environmental Science. https://doi.org/10.1016/s1474-8177(07)05011-5.

    Article  Google Scholar 

  • El-Rayes, A., Arnous, M., & Aziz, A. (2017). Morphotectonic controls of groundwater flow regime and relating environmental impacts in Northwest Sinai, Egypt. Arabian Journal of Geosciences, 10, 401. https://doi.org/10.1007/s12517-017-3188-5.

    Article  Google Scholar 

  • El-Sayed, S. A., & Morsy, S. M. (2018). Hydrogeological assessment of Moghra aquifer, North Western Desert, Egypt. Annals of the Geological Survey of Egypt, XXXV, 110–130.

    Google Scholar 

  • Ezzat, M. A. (1982). Impact of a future Qattara salt-water lake on the Nubian Sandstone aquifer system in the Western Desert, Egypt. In Improvements of methods of long term prediction of variations in groundwater resources and regimes due to human activity (Proceedings of the Exeter Symposium, July 1982). IAHS Publ. no. 136, (pp. 297–314). http://hydrologie.org/redbooks/a136/iahs_136_0297.pdf.

  • Furtak, H., & Langguth, H. R. (1967). Mem. IAH-Congress 1965 (Hannover) Zur hydrochemischen kennzeichnung von grundwässern und grundwassertypen mittels kennzahlen (Vol. 7, pp. 86–96) (in Deutsch).

  • Gimenez Forcada, E. (2010). Dynamic of sea water interface using hydro chemical facies evolution diagram. Ground Water, 48(2), 212–216.

    Google Scholar 

  • Gobashy, M. M., & Al-Garni, M. A. (2008). High resolution ground magnetic survey (HRGM) for determining the optimum location of subsurface Dam in Wadi Nu’man, Makkah Al Mukarammah, KSA. JKAU: Earth Sciences, 19, 57–83.

    Google Scholar 

  • Gomaa, M. A., Hamouda, A. A., Abdelfattah, M. E., Emara, M. M., & El-Sabbah, M. M. B. (2013). Assessment of hydrogeochemical processes affecting groundwater quality in the area between Safaga and El-Quseir, Eastern Desert, Egypt. Middle East Journal of Applied Sciences, 3(4), 129–142.

    Google Scholar 

  • Hamdan, A. M., Omran, A. A., & Sawires, R. F. (2012). Evaluation of hydrogeochemical parameters of the groundwater in El-Bahariya Oasis, Western Desert, Egypt. The Journal of Geology. https://www.researchgate.net/publication/265794155.

  • Hassan, S. M., Steel, R. J., El Barkooky, A. N., & Hamdan, M. A. (2012). Stacked, lower Miocene tide-dominated estuary deposits in a transgressive succession, Western Desert, Egypt. Sedimentary Geology, 282, 241–255.

    Google Scholar 

  • Herrera, E., & Garfias, J. (2013). Characterizing a fractured aquifer in Mexico using geological attributes related to open-pit groundwater. Hydrogeology Journal, 21(6), 1323–1338.

    Google Scholar 

  • Hilmy, M., Elshazly, M., Tamer, M., & Korony, E. (1977). Contribution to the hydrogeology of the water bearing formation in the area between Burg El Arab and El Dabaa, Western Desert, Egypt. The Desert Institute Bulletin, 27(2), 53–72.

    Google Scholar 

  • Islam, A. R. M. T., Shen, S., Bodrud-Doza, M., Rahman, M. A., & Das, S. (2017). Assessment of trace elements of groundwater and their spatial distribution in Rangpur district, Bangladesh. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-2886-3.

    Article  Google Scholar 

  • Khan, S. D., Fathy, M. S., & Abdelazeem, M. (2014). Remote sensing and geophysical investigations of Moghra Lake in the Qattara Depression, Western Desert, Egypt. Journal of Geomorphology, 207, 10–22.

    Google Scholar 

  • Kura, N. U., Ramli, M. F., Sulaiman, W. N. A., Ibrahim, S., Aris, A. Z., & Mustapha, A. (2013). Evaluation of factors influencing the groundwater chemistry in a small tropical Island of Malaysia. International Journal of Environmental Research and Public Health, 10, 1861–1881.

    Google Scholar 

  • Li, X. (2006). On ‘Theta map: Edge detection in magnetic data’ (C. Wijns, C. Perez, P. Kowalczyk 2005). Geophysics, 71, X11–X12.

    Google Scholar 

  • Magaritz, M., & Luzier, J. E. (1985). Water rock interactions and seawater–freshwater mixing effects in the central dunes aquifer, Coos Bay, Oregon. Geochimica et Cosmochimica Acta, 49, 2515–2525.

    Google Scholar 

  • Manning, A. H. (2011). Mountain-block recharge, present and past, in the eastern Española Basin, New Mexico, USA. Hydrogeology Journal, 19(2), 379–397.

    Google Scholar 

  • McMahon, P. B., Vroblesky, D. A., Bradley, P. M., Chapelle, F. H., & Gullett, C. D. (1995). Evidence for enhanced mineral dissolution in organic acid-rich shallow groundwater. Groundwater Journal, 33(2), 207–216.

    Google Scholar 

  • Mohamaden, M. I. I., El-Sayed, H. M., & Mansour, S. A. (2017). Application of electrical resistivity and GIS for groundwater exploration and subsurface mapping at northeast Qattara Depression, Western Desert, Egypt. Egyptian Journal of Basic and Applied Sciences, 4, 80–88.

    Google Scholar 

  • Mokrika, R., Karrob, E., Savitskajac, L., & Drevalienea, G. (2009). The origin of barium in the Cambrian-Vendian aquifer system, North Estonia. Estonian Journal of Earth Sciences, 58(3), 193–208.

    Google Scholar 

  • Mollema, P. N. (2016). Water and chemical budgets of gravel pit lakes: Case studies of fluvial gravel pit lakes along the Meuse River (The Netherlands) and coastal gravel pit lakes along the Adriatric Sea (Ravenna, Italy). Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands.

  • Mollema, P. N., Antonellini, M., Stuyfzand, P. J., Juhasz-Holterman, M. H. A., & Van Diepenbeek, P. M. J. A. (2015). Metal accumulation in an artificially recharged gravel pit lake used for drinking water supply. Journal of Geochemical Exploration, 150, 35–51.

    Google Scholar 

  • Moore, W. S. (1999). The subterranean estuary: A reaction zone of groundwater and seawater. Marine Chemistry, 65, 111–126.

    Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section—Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

    Google Scholar 

  • Neal, C. & Kirchner, J. W. (2000). Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls. Hydrology and Earth System Sciences, 4, 295–310. https://doi.org/10.5194/hess-4-295-2000.

    Article  Google Scholar 

  • Njinga, R. L., Baba Alfa, B., Sunday, O., & Muhammad, T. A. (2011). Evaluation of trace elements in clay sediments products of Tatiko locality using X-ray fluorescence technique. Advances in Applied Science Research, 2(6), 370–378.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (2003). PHREEQC—A computer program for speciation, batch reactions, one dimensional transport and inverse geochemical calculations. US Geological Survey, Reston. http://pubs.usgs.gov/tm/06/a43.

  • Rabeh, T., Bedair, S., & Abdel-Zaher, M. (2018). Structural control of hydrogeological aquifers in the Bahariya Oasis, Western Desert, Egypt. Geosciences Journal, 22, 145–154.

    Google Scholar 

  • Rehman, F., Abdelazeem, M., Gobashy, M. M., Harbi, H. M., Rehman, F., & Abuelnaga, H. S. O. (2019). Application of magnetic method to define the structural setting controlling the contaminated area of Wadi Bani Malik, east Jeddah, Saudi Arabia. Bollettino di Geofisica Teorica ed Applicata, 60(1), 97–122.

    Google Scholar 

  • Rezaei, M., Sanz, E., Raeisi, E., Ayora, C., et al. (2005). Reactive transport modeling of calcite dissolution in the fresh–salt water mixing zone. Journal of Hydrology, 311, 282–298.

    Google Scholar 

  • Rizk, Z. S., & Davis, A. D. (1991). Impact of the proposed Qattara Reservoir on the Moghra aquifer of northwestern Egypt. Ground Water, 29(2), 232–238.

    Google Scholar 

  • Roest, W. R., & Pilkington, M. (1993). Identifying remanent magnetization effects in magnetic data. Geophysics, 58, 653–659.

    Google Scholar 

  • Roques, C., Bour, O., Aquilina, L., Dewandel, B., Leray, S., et al. (2014). Hydrological behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding reservoirs. Journal of Hydrology, 509, 42–54.

    Google Scholar 

  • Said, R. (1962). The geology of Egypt (p. 377). Amsterdam: Elsevier.

    Google Scholar 

  • Said, R. (1993). River Nile. Cairo: El Helal Publications. (in Arabic).

    Google Scholar 

  • Salem, Z. E., & El-Horiny, M. M. (2014). Hydrogeochemical evaluation of calcareous eolianite aquifer with saline soil in a semiarid area. Environmental Science and Pollution Research, 21, 8294–8314.

    Google Scholar 

  • Salem, Z. E., Elsaiedy, G., & ElNahrawy, A. (2017). Assessment of the groundwater quality for drinking and irrigation purposes in the central Nile Delta Region, Egypt. In A. M. Negm (Eds.), Groundwater in the Nile Delta. The handbook of environmental chemistry (Vol. 73). Berlin: Springer.

    Google Scholar 

  • Salem, Z. E., & Osman, O. M. (2017). Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion, West Nile Delta, Egypt. Environmental Science and Pollution Research, 24, 3675–3704.

    Google Scholar 

  • Salem, A., Williams, S., Fairhead, J., Ravat, D., & Smith, R. (2007). Tilt-depth method: A simple depth estimation method using first order magnetic derivatives. The Leading Edge, 26, 1502–1505.

    Google Scholar 

  • Sidibé, A. M., Lin, X., & Koné, S. (2019). Assessing groundwater mineralization process, quality, & isotopic recharge origin in the Sahel region in Africa. Water, 11, 789.

    Google Scholar 

  • Smart, P. L., Dawans, J. M., & Whitaker, F. (1988). Carbonate dissolution in a modern mixing zone. Nature, 335, 813–881.

    Google Scholar 

  • Snyder, M., Taillefert, M., & Ruppel, C. (2014). Redox zonation at the saline-influenced boundaries of a permeable surficial aquifer: Effects of physical forcing on the biogeochemical cycling of iron and manganese. Journal of Hydrology, 296, 164–178.

    Google Scholar 

  • Narany, T. S., Ramli, M. F., Aris, A. Z., Sulaiman, W. N. A., Juahir, H., & Fakharian, K. (2014). Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol Babol Plain, Iran. Scientific World Journal. https://doi.org/10.1155/2014/419058.

    Article  Google Scholar 

  • Valocchi, A. J., Roberts, P. V., Parks, G. A., & Street, R. L. (1981a). Simulation of the transport of ion-exchanging solutes using laboratory-determined chemical parameter values. Ground Water, 19, 600–607.

    Google Scholar 

  • Valocchi, A. J., Street, R. L., & Roberts, P. V. (1981b). Transport of ion-exchanging solutes in groundwater: Chromatographic theory and field simulation. Water Resources Research, 17, 1517–1527.

    Google Scholar 

  • Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta map: Edge detection in magnetic data. Geophysics, 70, 39–43.

    Google Scholar 

  • Yousef, A. F. (2013). Lights on the hydrogeology of Moghra Oasis, North Western Desert, Egypt. Annals Geological Survey Egypt, 32, 1–4.

    Google Scholar 

  • Youssef, A. M., Pradhan, B., Sabtan, A. A., & El-Harbi, H. M. (2012). Coupling of remote sensing data aided with field investigations for geological hazards assessment in Jazan area, Kingdom of Saudi Arabia. Environmental Earth Sciences, 65(1), 119–130.

    Google Scholar 

  • Yuan, R., Song, X., Zhang, Y., Han, D., Wang, S., & Tang, C. (2011). Using major ions and stable isotopes to characterize recharge regime of a fault-influenced aquifer in Beiyishui River Watershed, North China plain. Journal of Hydrology, 405, 512–521.

    Google Scholar 

Download references

Acknowledgments

This work is extracted from a project supported financially by the Science and Technology Development Fund (STDF), Egypt, Project ID:15239. Many thanks for the anonymous reviewers for their comments and questions, which improve so much our manuscript and integrated conclusions. In addition, our deep thanks to Prof. Dr. Mohamed Gobashy, Head of Geophysics Department, Cairo University, for his support and revision to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Abdelazeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelazeem, M., Salem, Z.E., Fathy, M.S. et al. Impact of Lithofacies and Structures on the Hydrogeochemistry of the Lower Miocene Aquifer at Moghra Oasis, North Western Desert, Egypt. Nat Resour Res 29, 3789–3817 (2020). https://doi.org/10.1007/s11053-020-09679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09679-3

Keywords

Navigation