Skip to main content
Log in

Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although nickel-based catalysts display good catalytic capability and excellent corrosion resistance under alkaline electrolytes for water splitting, it is still imperative to enhance their activity for real device applications. Herein, we decorated Ni0.85Se hollow nanospheres onto reduced graphene oxide (RGO) through a hydrothermal route, then annealed this composite at different temperatures (400 °C, NiSe2-400 and 450 °C, NiSe2-450) under argon atmosphere, yielding a kind of NiSe2/RGO composite catalysts. Positron annihilation spectra revealed two types of vacancies formed in this composite catalyst. We found that the NiSe2-400 catalyst with dual Ni-Se vacancies is able to catalyze the oxygen evolution reaction (OER) efficiently, needing a mere 241 mV overpotential at 10 mA·cm−2. In addition, this catalyst exhibits outstanding stability. Computational studies show favorable energy barrier on NiSe2-400, enabling moderate OH adsorption and O2 desorption, which leads to the enhanced energetics for OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, P. F.; Yang, S.; Zheng, L. R.; Zhang, B.; Yang, H. G. Mo6+ activated multimetal oxygen-evolving catalyst. Chem. Sci. 2017, 8, 3484–3488.

    CAS  Google Scholar 

  2. Li, Y. X.; Yan, D. F.; Zou, Y. Q.; Xie, C.; Wang, Y. Y.; Zhang, Y. Q.; Wang, S. Y. Rapidly engineering the electronic properties and morphological structure of NiSe nanowires for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 25494–25500.

    CAS  Google Scholar 

  3. Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426–1440.

    CAS  Google Scholar 

  4. Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.

    Google Scholar 

  5. Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698–4703.

    CAS  Google Scholar 

  6. Hua, B.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J. L. A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254.

    CAS  Google Scholar 

  7. Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

    CAS  Google Scholar 

  8. Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1−xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2015, 138, 313–318.

    Google Scholar 

  9. Ping, J. F.; Wang, Y. X.; Lu, Q. P.; Chen, B.; Chen, J. Z.; Huang, Y.; Ma, Q. L.; Tan, C. L.; Yang, J.; Cao, X. H. et al. Self-assembly of single-layer coal-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 2016, 28, 7640–7645.

    CAS  Google Scholar 

  10. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 128, 8812–8816.

    Google Scholar 

  11. Lee, K. J.; Shin, D. Y.; Byeon, A.; Lim, A.; Jo, Y. S.; Begley, A.; Lim, D. H.; Sung, Y. E.; Park, H. S.; Chae, K. H. et al. Hierarchical cobalt-nitride and -oxide co-doped porous carbon nanostructures for highly efficient and durable bifunctional oxygen reaction electrocatalysts. Nanoscale 2017, 9, 15846–15855.

    CAS  Google Scholar 

  12. Huang, H. W.; Yu, C.; Zhao, C. T.; Han, X. T.; Yang, J.; Liu, Z. B.; Li, S. F.; Zhang, M. D.; Qiu, J. S. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy 2017, 34, 472–480.

    CAS  Google Scholar 

  13. Jiao, L.; Zhou, Y. X.; Jiang, H. L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1698.

    CAS  Google Scholar 

  14. Wang, Y.; Williams, T.; Gengenbach, T.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Unique hybrid Ni2P/MoO2@MoS2 nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale 2017, 9, 17349–17356.

    CAS  Google Scholar 

  15. Wang, F. M.; Li, Y. C.; Shifa, T. A.; Liu, K. L.; Wang, F.; Wang, Z. X.; Xu, P.; Wang, Q. S.; He, J. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 6919–6924.

    CAS  Google Scholar 

  16. Teng, X.; Wang, J. Y.; Ji, L. L.; Tang, W. Q.; Chen, Z. F. Hierarchically structured Ni nanotube array-based integrated electrodes for water splitting. ACS Sustainable Chem. Eng. 2018, 6, 2069–2077.

    CAS  Google Scholar 

  17. Kwak, I. H.; Im, H. S.; Jang, D. M.; Kim, Y. W.; Park, K.; Lim, Y. R.; Cha, E. H.; Park, J. CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 5327–5334.

    CAS  Google Scholar 

  18. Zhang, J.; Wang, Y.; Zhang, C.; Gao, H.; Lv, L. F.; Han, L. L.; Zhang, Z. H. Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustainable Chem. Eng. 2018, 6, 2231–2239.

    CAS  Google Scholar 

  19. Jing, Y.; Li, Q. Q.; Xu, C. Y.; Na, C.; Li, Y.; Liu, H. G.; Zhen, L.; Dravid, V. P.; Wu, J. S. NiSe2 pyramids deposited on n-doped graphene encapsulated Ni foam for high-performance water oxidation. J. Mater. Chem. A 2017, 5, 3981–3986.

    Google Scholar 

  20. Li, X.; Han, G. Q.; Liu, Y. R.; Dong, B.; Shang, X.; Hu, W. H.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2016, 205, 77–84.

    CAS  Google Scholar 

  21. Sun, C. W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135.

    CAS  Google Scholar 

  22. Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J. et al. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem., Int. Ed. 2017, 56, 6572–6577.

    CAS  Google Scholar 

  23. Zhu, S.; Li, J. J.; Deng, X. Y.; He, C. N.; Liu, E. Z.; He, F.; Shi, C. S.; Zhao, N. Q. Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adva. Funct. Mater. 2017, 27, 1605017.

    Google Scholar 

  24. Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

    CAS  Google Scholar 

  25. Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.

    CAS  Google Scholar 

  26. Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.

    Google Scholar 

  27. Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt(II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

    CAS  Google Scholar 

  28. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    CAS  Google Scholar 

  29. Liu, Y. W.; Cheng, H.; Lyu, M.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    CAS  Google Scholar 

  30. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    CAS  Google Scholar 

  31. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  33. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  34. Zhang, Y. K.; Yang, W. T. Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890.

    CAS  Google Scholar 

  35. Zhang, L. C.; Wang, M. Q.; Chen, H.; Liu, H.; Wang, Y.; Zhang, L. Z.; Hou, G. R.; Bao, S. J. Hierarchical growth of vertically standing Fe3O4-FeSe/CoSe2 nano-array for high effective oxygen evolution reaction. Mater. Res. Bull. 2020, 122, 110680.

    CAS  Google Scholar 

  36. Huang, M. J.; Xiang, W.; Zhou, T.; Mao, J.; Wu, X. H.; Guo, X. The critical role of the surface iron-oxalate complexing species in determining photochemical degradation of norfloxacin using different iron oxides. Sci. Total Environ. 2019, 697, 134220.

    CAS  Google Scholar 

  37. Xu, B.; Yang, H.; Yuan, L. C.; Sun, Y. Q.; Chen, Z. M.; Li, C. C. Direct selenylation of mixed Ni/Fe metal-organic frameworks to NiFe-Se/C nanorods for overall water splitting. J. Power Sources 2017, 366, 193–199.

    CAS  Google Scholar 

  38. Gao, Z.; Qi, J.; Chen, M. X.; Wei, Z.; Cao, R. An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochim. Acta 2017, 224, 412–418.

    CAS  Google Scholar 

  39. Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

    CAS  Google Scholar 

  40. Liang, J.; Yang, Y. C.; Zhang, J.; Wu, J. L.; Dong, P.; Yuan, J. T.; Zhang, G. M.; Lou, J. Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale 2015, 7, 14813–14816.

    CAS  Google Scholar 

  41. Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.

    CAS  Google Scholar 

  42. Bai, J. W.; Li, Y.; Wei, P. K.; Liu, J. D.; Chen, W.; Liu, L. Enhancement of photocatalytic activity of Bi2O3-BiOI composite nanosheets through vacancy engineering. Small 2019, 15, 1900020.

    Google Scholar 

  43. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    CAS  Google Scholar 

  44. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    CAS  Google Scholar 

  45. Zhang, X.; Yang, Y. X.; Guo, S. Q.; Hu, F. Z.; Liu, L. Mesoporous Ni0.85Se nanospheres grown in situ on graphene with high performance in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 8457–8464.

    CAS  Google Scholar 

  46. Zhang, H. J.; Li, X. T.; Meng, X. F.; Zhou, S. T.; Yang, G.; Zhou, X. M. Isoelectronic analogues of graphene: The BCN monolayers with visible-light absorption and high carrier mobility. J. Phys.: Condens. Matter 2019, 31, 125301.

    Google Scholar 

  47. Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 913–1920.

    Google Scholar 

  48. Liu, Y. X.; Bai, Y.; Han, Y.; Yu, Z.; Zhang, S. M.; Wang, G. H.; Wei, J. H.; Wu, Q. B.; Sun, K. N. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 36917–36926.

    CAS  Google Scholar 

  49. Du, Y. S.; Cheng, G. Z.; Luo, W. Colloidal synthesis of urchin-like Fe doped NiSe2 for efficient oxygen evolution. Nanoscale 2017, 9, 6821–6825.

    CAS  Google Scholar 

  50. Wu, Z. Y.; Ji, W. B.; Hu, B. C.; Liang, H. W.; Xu, X. X.; Yu, Z. L.; Li, B. Y.; Yu, S. H. Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 51, 286–293.

    CAS  Google Scholar 

  51. Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

    Google Scholar 

  52. Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923–4928.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Tianjin science and technology support key projects (No. 18YFZCSF00500), the National Natural Science Foundation of China (Nos. 21521001, 21431006, 21225315, 21321002, 91645202, 51702312, and 21975237), the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSCUE007), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH036), the National Basic Research Program of China (Nos. 2014CB931800 and 2018YFA0702001), the Chinese Academy of Sciences (Nos. KGZD-EW-T05 and XDA090301001), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21000000), the Fundamental Research Funds for the Central Universities (No. WK2340000076), and the Recruitment Program of Global Youth Experts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyang Liu, Haijun Zhang, Min-Rui Gao or Shu-Hong Yu.

Electronic Supplementary Material

12274_2020_3005_MOESM1_ESM.pdf

Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Hao, Z., Yang, Y. et al. Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Res. 13, 3292–3298 (2020). https://doi.org/10.1007/s12274-020-3005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3005-4

Keywords

Navigation