Skip to main content
Log in

Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multimodal imaging in the second near-infrared window (NIR-II) guided cancer therapy is a highly precise and efficient cancer theranostic strategy. However, it is still a challenge to develop activated NIR-II optical imaging and therapy agents. In this study, we develop a pH-responsive hybrid plasmonic-fluorescent vesicle by self-assembly of amphiphilic plasmonic nanogapped gold nanorod (AuNNR) and fluorescent down-conversion nanoparticles (DCNP) (AuNNR-DCNP Ve), showing remarkable and activated NIR-II fluorescence (FL)/NIR-II photoacoustic (PA) imaging performances. The hybrid vesicle also exhibited superior loading capacity of doxorubicin as a superior drug carrier and efficient radiosensitizer for X-ray-induced radiotherapy. Interestingly, the accumulated hybrid AuNNR-DCNP Ve in the tumor resulted in a recovery of NIR-II FL imaging signal and a variation in NIR-II PA imaging signal. Dual activated NIR-II PA and FL imaging of the hybrid vesicle could trace drug release and precisely guided cancer radiotherapy to ultimately reduce the side effects to healthy tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. F.; Song, J. B.; Chen, X. Y.; Yang, H. H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101.

    CAS  Google Scholar 

  2. Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 2015, 44, 1302–1317.

    CAS  Google Scholar 

  3. Cai, Y.; Wei, Z.; Song, C. H.; Tang, C. C.; Han, W.; Dong, X. C. Optical nano-agents in the second near-infrared window for biomedical applications. Chem. Soc. Rev. 2019, 48, 22–37.

    CAS  Google Scholar 

  4. Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.

    CAS  Google Scholar 

  5. Zhou, Z. J.; Song, J. B.; Nie, L. M.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626.

    CAS  Google Scholar 

  6. Yang, L. J.; Zhou, Z. J.; Song, J. B.; Chen, X. Y. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 2019, 48, 5140–5176.

    CAS  Google Scholar 

  7. Fan, J.; He, Q. J.; Liu, Y.; Zhang, F. W.; Yang, X. Y.; Wang, Z.; Lu, N.; Fan, W. P.; Lin, L. S.; Niu, G. et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via no-enhanced chemosensitization. ACS Appl. Mater. Interfaces 2016, 8, 13804–13811.

    CAS  Google Scholar 

  8. Li, C. Y.; Wang, Q. B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 2018, 12, 9654–9659.

    CAS  Google Scholar 

  9. Tsai, M. F.; Chang, S. H. G.; Cheng, F. Y.; Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.

    CAS  Google Scholar 

  10. Deng, H. Z.; Dong, A. J.; Song, J. B.; Chen, X. Y. Injectable thermosensitive hydrogel systems based on functional peg/pcl block polymer for local drug delivery. J. Control. Release 2019, 297, 60–70.

    CAS  Google Scholar 

  11. Zhu, R.; Su, L. C.; Dai, J. Y.; Li, Z. W.; Bai, S. M.; Li, Q. Q.; Chen, X. Y.; Song, J. B.; Yang, H. H. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imagingguided concurrent chemo-immunotherapy. ACS Nano 2020, 14, 3991–4006.

    CAS  Google Scholar 

  12. Jung, S.; Chen, X. Y. Quantum dot-dye conjugates for biosensing, imaging, and therapy. Adv. Healthc Mater. 2018, 7, 1800252.

    Google Scholar 

  13. Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.

    CAS  Google Scholar 

  14. Yao, C.; Wang, P. Y.; Li, X. M.; Hu, X. Y.; Hou, J. L.; Wang, L. Y.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341–9348.

    CAS  Google Scholar 

  15. Vankayala, R.; Hwang, K. C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: An emerging paradigm for cancer treatment. Adv. Mater. 2018, 30, 1706320.

    Google Scholar 

  16. McHugh, K. J.; Jing, L. H.; Behrens, A. M.; Jayawardena, S.; Tang, W.; Gao, M. Y.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 2018, 30, 1706356.

    Google Scholar 

  17. Li, Z.; Hu, Y. H.; Fu, Q. R.; Liu, Y.; Wang, J.; Song, J. B.; Yang, H. H. Nir/ros-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy. Adv. Funct. Mater. 2020, 30, 1905758.

    CAS  Google Scholar 

  18. Liu, T. J.; Tong, L. L.; Lv, N. N.; Ge, X. G.; Fu, Q. R.; Gao, S.; Ma, Q. J.; Song, J. B. Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 2019, 29, 1806429.

    Google Scholar 

  19. Lin, X. H.; Liu, S. Y.; Zhang, X.; Zhu, R.; Chen, S.; Chen, X. Y.; Song, J. B.; Yang, H. H. An ultrasound activated vesicle of Janus au-MnO nanoparticles for promoted tumor penetration and sonochemodynamic therapy of orthotopic liver cancer. Angew. Chem., Int. Ed. 2020, 59, 1682–1688.

    CAS  Google Scholar 

  20. Wang, S.; Lin, J.; Wang, T. F.; Chen, X. Y.; Huang, P. Recent advances in photoacoustic imaging for deep-tissue biomedical applications. Theranostics 2016, 6, 2394–2413.

    CAS  Google Scholar 

  21. Zubkovs, V.; Antonucci, A.; Schuergers, N.; Lambert, B.; Latini, A.; Ceccarelli, R.; Santinelli, A.; Rogov, A.; Ciepielewski, D.; Boghossian, A. A. Spinning-disc confocal microscopy in the second near-infrared window (NIR-II). Sci. Rep. 2018, 8, 13770.

    Google Scholar 

  22. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

    CAS  Google Scholar 

  23. Song, J. B.; Lin, L. S.; Yang, Z.; Zhu, R.; Zhou, Z. J.; Li, Z. W.; Wang, F.; Chen, J. Y.; Yang, H. H.; Chen, X. Y. Self-assembled responsive bilayered vesicles with adjustable oxidative stress for enhanced cancer imaging and therapy. J. Am. Chem. Soc. 2019, 141, 8158–8170.

    CAS  Google Scholar 

  24. Wei, J.; Sun, Z. K.; Luo, W.; Li, Y. H.; Elzatahry, A. A.; Al-Enizi, A. M.; Deng, Y. H.; Zhao, D. Y. New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 2017, 139, 1706–1713.

    CAS  Google Scholar 

  25. Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349–365.

    CAS  Google Scholar 

  26. Fan, Q. L.; Cheng, K.; Yang, Z.; Zhang, R. P.; Yang, M.; Hu, X.; Ma, X. W.; Bu, L. H.; Lu, X. M.; Xiong, X. X. et al. Perylenediimide- based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 2015, 27, 843–847.

    CAS  Google Scholar 

  27. Zhao, M. Y.; Li, B. H.; Wang, P. Y.; Lu, L. F.; Zhang, Z. C.; Liu, L.; Wang, S. F.; Li, D. D.; Wang, R.; Zhang, F. Supramolecularly engineered NIR-II and upconversion nanoparticles in vivo assembly and disassembly to improve bioimaging. Adv. Mater. 2018, 30, 1804982.

    Google Scholar 

  28. Zhu, S. J.; Herraiz, S.; Yue, J. Y.; Zhang, M. X.; Wan, H.; Yang, Q. L.; Ma, Z. R.; Wang, Y.; He, J. H.; Antaris, A. L. et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater. 2018, 30, 1705799.

    Google Scholar 

  29. Wang, Q.; Dai, Y. N.; Xu, J. Z.; Cai, J.; Niu, X. R.; Zhang, L.; Chen, R. F.; Shen, Q. M.; Huang, W.; Fan, Q. L. All-in-one phototheranostics: Single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 2019, 29, 1901480.

    Google Scholar 

  30. Wen, Q. X.; Zhang, Y. J.; Li, C. Y.; Ling, S. S.; Yang, X. H.; Chen, G. C.; Yang, Y.; Wang, Q. B. NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew. Chem., Int. Ed. 2019, 58, 11001–11006.

    CAS  Google Scholar 

  31. Wang, S. F.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D. D.; Zhang, F. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 2019, 19, 2418–2427.

    CAS  Google Scholar 

  32. Wang, P. Y.; Fan, Y.; Lu, L. F.; Liu, L.; Fan, L. L.; Zhao, M. Y.; Xie, Y.; Xu, C. J.; Zhang, F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 2018, 9, 2898.

    Google Scholar 

  33. Zhang, W. M.; Chen, T.; Su, L. C.; Ge, X. G.; Chen, X. Y.; Song, J. B.; Yang, H. H. Quantum dot-based sensitization system for boosted photon absorption and enhanced second near-infrared luminescence of lanthanide-doped nanoparticle. Anal. Chem. 2020, 92, 6094–6102.

    CAS  Google Scholar 

  34. Ceppi, L.; Bardhan, N. M.; Na, Y. J.; Siegel, A.; Rajan, N.; Fruscio, R.; Del Carmen, M. G.; Belcher, A. M.; Birrer, M. J. Real-time single-walled carbon nanotube-based fluorescence imaging improves survival after debulking surgery in an ovarian cancer model. ACS Nano 2019, 13, 5356–5365.

    CAS  Google Scholar 

  35. Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384–392.

    CAS  Google Scholar 

  36. Yu, G. C.; Yang, J.; Fu, X.; Wang, Z. T.; Shao, L.; Mao, Z. W.; Liu, Y. J.; Yang, Z.; Zhang, F. W.; Fan, W. P. et al. A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host-guest complex as an ultrasound and photoacoustic signal nanoamplifier. Mater. Horiz. 2018, 5, 429–435.

    CAS  Google Scholar 

  37. Naczynski, D. J.; Sun, C.; Turkcan, S.; Jenkins, C.; Koh, A. L.; Ikeda, D.; Pratx, G.; Xing, L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett. 2015, 15, 96–102.

    CAS  Google Scholar 

  38. Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.

    CAS  Google Scholar 

  39. Wang, D. S.; Xie, T.; Qing, P.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.

    CAS  Google Scholar 

  40. Robinson, J. T.; Hong, G. S.; Liang, Y. Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664–10669.

    CAS  Google Scholar 

  41. Tang, W.; Yang, Z.; Wang, S.; Wang, Z. T.; Song, J. B.; Yu, G. C.; Fan, W. P.; Dai, Y. L.; Wang, J. J.; Shan, L. L. et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 2018, 12, 2610–2622.

    CAS  Google Scholar 

  42. Hao, X. X.; Li, C. Y.; Zhang, Y. J.; Wang, H. Z.; Chen, G. C.; Wang, M.; Wang, Q. B. Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1804437.

    Google Scholar 

  43. Yang, X. Y.; Wang, Z.; Zhang, F. W.; Zhu, G. Z.; Song, J. B.; Teng, G. J.; Niu, G.; Chen, X. Y. Mapping sentinel lymph node metastasis by dual-probe optical imaging. Theranostics 2017, 7, 153–163.

    CAS  Google Scholar 

  44. Ren, F.; Ding, L. H.; Liu, H. H.; Huang, Q.; Zhang, H.; Zhang, L. J.; Zeng, J. F.; Sun, Q.; Li, Z.; Gao, M. Y. Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature. Biomaterials 2018, 175, 30–43.

    CAS  Google Scholar 

  45. Fu, Q. R.; Li, Z.; Ye, J. M.; Li, Z.; Fu, F. F.; Lin, S. L.; Chang, C. A.; Yang, H. H.; Song, J. B. Magnetic targeted near-infrared II PA/MR imaging guided photothermal therapy to trigger cancer immunotherapy. Theranostics 2020, 10, 4997–5010.

    CAS  Google Scholar 

  46. Cui, D.; Huang, J. G.; Zhen, X.; Li, J. C.; Jiang, Y. Y. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 5920–5924.

    CAS  Google Scholar 

  47. Deng, H. Z.; Lin, L. S.; Wang, S.; Yu, G. C.; Zhou, Z. J.; Liu, Y. J.; Niu, G.; Song, J. B.; Chen, X. Y. X-ray-controlled bilayer permeability of bionic nanocapsules stabilized by nucleobase pairing interactions for pulsatile drug delivery. Adv. Mater. 2019, 31, 1903443.

    Google Scholar 

  48. Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.

    Google Scholar 

  49. Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y. Y.; Lian, W. B.; Lin, L. S.; Song, J. B.; Yang, H. H. An inorganic prodrug, tellurium nanowires with enhanced ros generation and gsh depletion for selective cancer therapy. Chem. Sci. 2019, 10, 7068–7075.

    CAS  Google Scholar 

  50. Maldonado, C. R.; Salassa, L.; Gomez-Blanco, N.; Mareque-Rivas, J. C. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordin. Chem. Rev. 2013, 257, 2668–2688.

    CAS  Google Scholar 

  51. Wang, P. Y.; Wang, X. D.; Luo, Q.; Li, Y.; Lin, X. X.; Fan, L. L.; Zhang, Y.; Liu, J. F.; Liu, X. L. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics 2019, 9, 369–380.

    CAS  Google Scholar 

  52. Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal- organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610.

    CAS  Google Scholar 

  53. Liu, J.; Cai, X. L.; Pan, H. C.; Bandla, A.; Chuan, C. K.; Wang, S. W.; Thakor, N.; Liao, L. D.; Liu, B. Molecular engineering of photoacoustic performance by chalcogenide variation in conjugated polymer nanoparticles for brain vascular imaging. Small 2018, 14, 1703732.

    Google Scholar 

  54. Du, Z.; Zhang, X.; Guo, Z.; Xie, J. N.; Dong, X. H.; Zhu, S.; Du, J. F.; Gu, Z. J.; Zhao, Y. L. X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4: Ce3+ scintillators and their applications for radiosensitization. Adv. Mater. 2018, 30, 1804046.

    Google Scholar 

  55. Jiang, Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.

    Google Scholar 

  56. Zhou, L. B.; Jing, Y.; Liu, Y. B.; Liu, Z. H.; Gao, D. Y.; Chen, H. B.; Song, W. Y.; Wang, T.; Fang, X. F.; Qin, W. P. et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics 2018, 8, 663–675.

    CAS  Google Scholar 

  57. Yang, Z.; Song, J. B.; Dai, Y. L.; Chen, J. Y.; Wang, F.; Lin, L. S.; Liu, Y. J.; Zhang, F. W.; Yu, G. C.; Zhou, Z. J. et al. Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics 2017, 7, 2177–2185.

    CAS  Google Scholar 

  58. Sun, W. J.; Shi, T. H.; Luo, L.; Chen, X. M.; Lv, P.; Lv, Y.; Zhuang, Y. X.; Zhu, J. J.; Liu, G.; Chen, X. Y. et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 2019, 31, 1808024.

    Google Scholar 

  59. Ge, X. G.; Fu, Q. R.; Su, L. C.; Li, Z.; Zhang, W. M.; Chen, T.; Yang, H. H.; Song, J. B. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020, 10, 4809–4821.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21635002 and 21874024), and the joint research projects of Health and Education Commission of Fujian Province (No. 2019-WJ-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jibin Song or Huanghao Yang.

Electronic supplementary material

12274_2020_3000_MOESM1_ESM.pdf

Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Su, L., Ge, X. et al. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 13, 3268–3277 (2020). https://doi.org/10.1007/s12274-020-3000-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3000-9

Keywords

Navigation