Skip to main content
Log in

An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ni-rich oxides, LiNixMnyCozO2 (NMC), are among leading candidates for cathode materials in Li-ion batteries. However, they are mostly fabricated by coprecipitation approach under complex conditions, which usually produces large secondary particles composed of aggregated primary particles. Undesirable cation mixing and crack propagation upon cycling block ion and electron transport, result in fast capacity fading and poor rate capability. Herein, we present an ultrasound-triggered cation chelation and reassembly route for synthesizing one-dimensional precursor with homogeneous element distribution at the atomic level. This process is accomplished by the synergistic combination of ultrasound and surfactant, which can disperse reactants and remove hydration shells surrounding cations so as to accelerate chelating reaction, and then separate and assemble chelates into one dimensional structure. The whole synthesis time is only 20 min (8.9 min of ultrasonic working time) in an open vessel under natural ambient conditions. One-dimensional LiNi0.6Mn0.2Co0.2O2 has a high reversible capacity (184 mAh·g−1 at 0.1 C) and long cycling stability (95.1% and 82.4% capacity retention for 100 and 1000 cycles, respectively). The short charging time of 76 s is realized at super high current rate of 20 C, which is very important to improve the competitiveness of electric vehicles relative to fuel vehicles. Our synthetic approach can provide a general strategy for the growth of mixed-metal-EDTA chelate precursors by changing the feeding ratio of Ni2+, Mn2+ and Co2+ cations in reaction for fabricating NMC cathode materials with other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

    Google Scholar 

  2. Andre, D.; Kim, S. J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future generations of cathode materials: An automotive industry perspective. J. Mater. Chem. A 2015, 3, 6709–6732.

    CAS  Google Scholar 

  3. Ding, Y.; Mu, D. B.; Wu, B. R.; Wang, R.; Zhao, Z. K.; Wu, F. Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl. Energy 2017, 195, 586–599.

    CAS  Google Scholar 

  4. Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.

    CAS  Google Scholar 

  5. Xu, J.; Lin, F.; Doeff, M. M.; Tong, W. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 2017, 5, 874–901.

    CAS  Google Scholar 

  6. Xia, Y.; Zheng, J. M.; Wang, C. M.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434–452.

    CAS  Google Scholar 

  7. Sun, Y. K.; Myung, S. T.; Park, B. C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320–324.

    CAS  Google Scholar 

  8. Lee, M. H.; Kang, Y. J.; Myung, S. T.; Sun, Y. K. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948.

    CAS  Google Scholar 

  9. Huang, Z. J.; Wang, Z. X.; Zheng, X. B.; Guo, H. J.; Li, X. H.; Jing, Q.; Yang, Z. H. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim. Acta 2015, 182, 795–802.

    CAS  Google Scholar 

  10. Yuan, J.; Wen, J. W.; Zhang, J. B.; Chen, D. M.; Zhang, D. W. Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim. Acta 2017, 230, 116–122.

    CAS  Google Scholar 

  11. Liang, L. W.; Du, K.; Peng, Z. D.; Cao, Y. B.; Duan, J. G; Jiang, J. B.; Hu, G. R. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim. Acta 2014, 130, 82–89.

    CAS  Google Scholar 

  12. Cheng, C. X.; Tan, L.; Liu, H. W.; Huang, X. T. High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation. Mater. Res. Bull. 2011, 46, 2032–2035.

    CAS  Google Scholar 

  13. Ren, D.; Shen, Y.; Yang, Y.; Shen, L. X.; Levin, B. D. A.; Yu, Y. C.; Muller, D. A.; Abruña, H. D. Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35811–35819.

    CAS  Google Scholar 

  14. Kim, U. H.; Jun, D. W.; Park, K. J.; Zhang, Q.; Kaghazchi, P.; Aurbach, D.; Major, D. T.; Goobes, G.; Dixit, M.; Leifer, N. et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 2018, 11, 1271–1279.

    CAS  Google Scholar 

  15. Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

    CAS  Google Scholar 

  16. Kim, H.; Kim, M. G.; Jeong, H. Y.; Nam, H.; Cho, J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 2015, 15, 2111–2119.

    CAS  Google Scholar 

  17. Watanabe, S.; Kinoshita, M.; Hosokawa, T.; Morigaki, K.; Nakura, K. Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J. Power Sources 2014, 258, 210–217.

    CAS  Google Scholar 

  18. Wang, H. F.; Jang, Y. I.; Huang, B. Y.; Sadoway, D. R.; Chiang, Y. M. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 473.

    CAS  Google Scholar 

  19. Cheng, K. L.; Mu, D. B.; Wu, B. R.; Wang, L.; Jiang, Y.; Wang, R. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages. Int. J. Miner. Metall. Mater. 2017, 24, 342–351.

    CAS  Google Scholar 

  20. Kim, J.; Cho, H.; Jeong, H. Y.; Ma, H.; Lee, J.; Hwang, J.; Park, M.; Cho, J. Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602559.

    Google Scholar 

  21. Singer, A.; Zhang, M.; Hy, S.; Cela, D.; Fang, C.; Wynn, T. A.; Qiu, B.; Xia, Y.; Liu, Z.; Ulvestad, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 2018, 3, 641–647.

    CAS  Google Scholar 

  22. Kim, N. Y.; Yim, T.; Song, J. H.; Yu, J. S.; Lee, Z. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J. Power Sources 2016, 307, 641–648.

    CAS  Google Scholar 

  23. Chen, T.; Li, X.; Wang, H.; Yan, X. X.; Wang, L.; Deng, B. W.; Ge, W. J.; Qu, M. Z. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J. Power Sources 2018, 374, 1–11.

    CAS  Google Scholar 

  24. Lim, J. M.; Hwang, T.; Kim, D.; Park, M. S.; Cho, K.; Cho, M. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci. Rep. 2017, 7, 39669.

    CAS  Google Scholar 

  25. Gent, W. E.; Li, Y. Y.; Ahn, S.; Lim, J.; Liu, Y. J.; Wise, A. M.; Gopal, C. B.; Mueller, D. N.; Davis, R.; Weker, J. N. et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1−xNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 2016, 28, 6631–6638.

    CAS  Google Scholar 

  26. Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.

    CAS  Google Scholar 

  27. Lee, S. W.; Kim, H.; Kim, M. S.; Youn, H. C.; Kang, K.; Cho, B. W.; Roh, K. C.; Kim, K. B. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 2016, 315, 261–268.

    CAS  Google Scholar 

  28. Liu, M. Y.; Liu, N.; Tan, J.; Su, Y. F.; Deng, W. S.; Chen, L.; Xue, R. X.; Zhang, Q. Y. Micromixer-assisted co-precipitation method for fast synthesis of layered Ni-rich materials for lithium-ion batteries. ChemElectroChem 2019, 6, 3057–3064.

    CAS  Google Scholar 

  29. Zheng, J. M.; Gu, M.; Genc, A.; Xiao, J.; Xu, P. H.; Chen, X. L.; Zhu, Z. H.; Zhao, W. B.; Pullan, L.; Wang, C. M. et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628–2635.

    CAS  Google Scholar 

  30. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    CAS  Google Scholar 

  31. Zhao, J.; Yu, X.; Gao, Z. G.; Zhao, W. X.; Xu, R. M.; Liu, Y.; Shen, H. One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chem. Eng. J. 2018, 332, 548–555.

    CAS  Google Scholar 

  32. Faulques, E.; Perry, D. L.; Lott, S.; Zubkowski, J. D.; Valente, E. J. Study of coordination and ligand structure in cobalt-EDTA complexes with vibrational microspectroscopy. Spectro. Acta Part A 1998, 54, 869–878.

    Google Scholar 

  33. Wang, L.; Uribe-Romo, F. J.; Mueller, L. J.; Harper, J. K. Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: A study on hydrogen bonding in polymorphs of palmitic acid. Phys. Chem. Chem. Phys. 2018, 20, 8475–8487.

    CAS  Google Scholar 

  34. Powell, J.; Kalakewich, K.; Uribe-Romo, F. J.; Harper, J. K. Solid-state NMR and DFT predictions of differences in COOH hydrogen bonding in odd and even numbered n-alkyl fatty acids. Phys. Chem. Chem. Phys. 2016, 78, 12541–12549.

    Google Scholar 

  35. Rozyyev, V.; Thirion, D.; Ullah, R.; Lee, J.; Jung, M.; Oh, H.; Atilhan, M.; Yavuz, C. T. High-capacity methane storage in flexible alkane-linked porous aromatic network polymers. Nat. Energy 2019, 4, 604–611.

    CAS  Google Scholar 

  36. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.

    CAS  Google Scholar 

  37. Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955–960.

    CAS  Google Scholar 

  38. Peng, J. B.; Cao, D. Y.; He, Z. L.; Guo, J.; Hapala, P.; Ma, R. Z.; Cheng, B. W.; Chen, J.; Xie, W. J.; Li, X. Z. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 2018, 557, 701–705.

    CAS  Google Scholar 

  39. Li, J. L.; Cao, C. B.; Xu, X. Y.; Zhu, Y. Q.; Yao, R. M. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 11848–11852.

    CAS  Google Scholar 

  40. Zhang, G. Q.; Han, E. S.; Zhu, L. Z.; Lu, M.; Chen, S. Synthesis and electrochemical properties of Li (Ni0.56Co0.19Mn0.24Al0.01)1−yAlyO2 as cathode material for lithium-ion batteries. Ionics 2017, 23, 2259–2267.

    CAS  Google Scholar 

  41. Song, M.; Zhou, G.; Lu, N.; Lee, J.; Nakouzi, E.; Wang, H.; Li, D. S. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 2020, 367, 40–45.

    CAS  Google Scholar 

  42. Liu, W.; Li, X. F.; Xiong, D. B.; Hao, Y. C.; Li, J. W.; Kou, H. R.; Yan, B.; Li, D. J.; Lu, S. G.; Koo, A. et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 2018, 44, 111–120.

    CAS  Google Scholar 

  43. Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 73, 3169–3183.

    Google Scholar 

  44. Cui, S. H.; Wei, Y.; Liu, T. C.; Deng, W. J.; Hu, Z. X.; Su, Y. T.; Li, H.; Li, M. F.; Guo, H.; Duan, Y. D. et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Adv. Energy Mater. 2016, 6, 1501309.

    Google Scholar 

  45. Zhan, X. W.; Gao, S.; Cheng, Y. T. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim. Acta 2019, 300, 36–44.

    CAS  Google Scholar 

  46. Yao, L.; Liang, F. Q.; Jin, J.; Chowdari, B. V. R.; Yang, J. H.; Wen, Z. Y. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem. Eng. J. 2020, 389, 124403.

    CAS  Google Scholar 

  47. Liang, J. N.; Lu, Y.; Wang, J.; Liu, X. P.; Chen, K.; Ji, W. H.; Zhu, Y.; Wang, D. L. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. J. Energy Chem. 2020, 47, 188–195.

    Google Scholar 

  48. Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51772337) and Free Exploration Fund of State Key Laboratory of Optoelectronic Materials and Technologies of China (No. OEMT-2017-ZY-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Electronic Supplementary Material

Supplementary material, approximately 37.8 MB.

12274_2020_3015_MOESM2_ESM.pdf

An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., Li, Z., Zhao, W. et al. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 13, 3347–3357 (2020). https://doi.org/10.1007/s12274-020-3015-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3015-2

Keywords

Navigation