Skip to main content
Log in

A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales

  • Recent Advances in Nonlinear Dynamics and Vibrations
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An analytical solution for the problem of an immersed flexible and vertical heavy rod subjected to a vertical top motion is developed using the multiple scales method directly applied to the partial differential equations of motion. The obtained results show good agreement with a numerical solution obtained using the finite element method for a study case. The analytical solution is then used to carry out some sensitivity studies. The effects of the structural nonlinearities, hydrodynamic and structural damping terms are investigated. It is shown that the nonlinearities play a role in defining the frequency of the top motion that causes the maximum amplitude of response, but not the value of the amplitude itself. In turn, the major role played by the hydrodynamic damping in defining the response amplitude is addressed. It is also shown that the structural damping have an important effect on the response amplitude even in the case of small damping ratio. This occurs due to the combined effect of the structural with the hydrodynamic damping. Finally, it is pointed out that small differences in the structural damping ratio can lead to significant differences in the response amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hsu C (1975) The response of a parametrically excited hanging string in fluid. J Sound Vib 39(3):305–316. https://doi.org/10.1016/s0022-460x(75)80084-8

    Article  MATH  Google Scholar 

  2. Rainey RCT (1977) The dynamics of tethered platforms. Trans R Inst Naval Archit 1:59–80

  3. Patel M, Park H (1991) Dynamics of tension leg platform tethers at low tension. part i - mathieu stability at large parameters. Marine Struct 4(3):257–273. https://doi.org/10.1016/0951-8339(91)90004-u

    Article  Google Scholar 

  4. Simos AN, Pesce CP (1997) Mathieu stability in the dynamics of tlp’s tethers considering variable tension along the length. In: Transactions on the built environment, vol. 29

  5. Chatjigeorgiou IK, Mavrakos SA (2002) Bounded and unbounded coupled transverse response of parametric excited vertical marine risers and tensioned cable legs for marine applications. Appl Ocean Res 24:341–354

    Article  Google Scholar 

  6. Chatjigeorgiou I (2004) On the parametric excitation of vertical elastic slender structures and the effect of damping in marine applications. Appl Ocean Res 26(1–2):23–33. https://doi.org/10.1016/j.apor.2004.08.001

    Article  Google Scholar 

  7. Chatjigeorgiou IK, Mavrakos SA (2005) Nonlinear resonances of parametrically excited risers - numerical and analytic investigation for \(\varOmega = 2\omega _1\). Comput Struct 83(8):560–573. https://doi.org/10.1016/j.compstruc.2004.11.009

    Article  Google Scholar 

  8. Zeng X, Xu W, Li X, Wu Y (2008) Nonlinear dynamic responses of the tensioned tether under parametric excitations. in: Proceedings of the 18th international offshore and polar engineering conference, ISOPE2008

  9. Yang H, Xiao F, Xu P (2013) Parametric instability prediction in a top-tensioned riser in irregular waves. Ocean Eng 70:39–50. https://doi.org/10.1016/j.oceaneng.2013.05.002

    Article  Google Scholar 

  10. Yang H, Xiao F (2014) Instability analyses of a top-tensioned riser under combined vortex and multi-frequency parametric excitations. Ocean Eng 81:12–28. https://doi.org/10.1016/j.oceaneng.2014.02.006

    Article  Google Scholar 

  11. Franzini G, Pesce C, Gonçalves R, Fujarra A, Mendes P (2018) An experimental investigation on concomitant vortex-induced vibration and axial top-motion excitation with a long flexible cylinder in vertical configuration. Ocean Eng 156:596–612. https://doi.org/10.1016/j.oceaneng.2018.02.063

    Article  Google Scholar 

  12. Franzini GR, Gay Neto A (2015) Numerical investigations on parametric excitation of a vertical beam under prescribed axial displacements. In: Proceedings of the 22nd international conference on sound and vibration

  13. Franzini GR, Mazzilli CEN (2016) Non-linear reduced-order model for parametric excitation of vertical and immersed slender rod. Int J Non-Linear Mech 80:29–39. https://doi.org/10.1016/j.ijnonlinmec.2015.09.019

    Article  Google Scholar 

  14. Chatjigeorgiou IK (2008) Solution of the boundary layer problem for calculating the natural modes of riser-type slender structures. J Offshore Mech Arct Eng 130:011003–011003–7

    Article  Google Scholar 

  15. Mazzilli CEN, Lenci S, Demeio L (2014) Non-linear free vibrations of tensioned vertical risers. In: Proceedings of the 8th European Nonlinear Dynamics Conference—ENOC2014

  16. Mazzilli CEN, Dias T (2015) Non-linear reduced-order modelling of heave-imposed motion in vertical risers. In: Proceedings of the 15th Pan-American Congress of Applied Mechanics - PACAM XV

  17. Mazzilli CE, Rizza F, Dias T (2016) Heave-imposed motion in vertical risers: a reduced-order modelling based on bessel-like modes. Procedia IUTAM 19:136–143. https://doi.org/10.1016/j.piutam.2016.03.018

    Article  Google Scholar 

  18. Franzini GR, Santos CCP, Mazzilli CEN, Pesce CP (2016) Parametric excitation of an immersed, vertical and slender beam using reduced-order models: influence of hydrodynamic coefficients. Mar Syst Ocean Technol 11(1–2):10–18. https://doi.org/10.1007/s40868-016-0013-z

    Article  Google Scholar 

  19. Franzini GR, Dias T, Mazzilli C, Pesce CP (2016) Parametric excitation of an offshore riser using reduced-order models based on bessel-type modes: assessment on hydrodynamic coefficients effects. In: Proceedings of the 6th International Conference on Nonlinear Science and Complexity. INPE Instituto Nacional de Pesquisas Espaciais. https://doi.org/10.20906/cps/nsc2016-0009

  20. Vernizzi GJ, Franzini GR, Lenci S (2019) Reduced-order models for the analysis of a vertical rod under parametric excitation. Int J Mech Sci 163:105122. https://doi.org/10.1016/j.ijmecsci.2019.105122

    Article  Google Scholar 

  21. Mazzilli CEN (2008) Effect of linearly varying normal force upon the nonlinear modal analysis of slender beams. In: Proceedings of the 6th European Nonlinear Dynamics Conference - ENOC2008

  22. Lenci S, Rega G (2016) Nonlinear free vibrations of planar elastic beams: a unified treatment of geometrical and mechanical effects. Procedia IUTAM 19:35–42. https://doi.org/10.1016/j.piutam.2016.03.007

    Article  Google Scholar 

  23. Lenci S, Rega G (2016) Axial–transversal coupling in the free nonlinear vibrations of timoshenko beams with arbitrary slenderness and axial boundary conditions. Proc R Soc A: Math Phys Eng Sci 472(2190):20160057. https://doi.org/10.1098/rspa.2016.0057

    Article  MathSciNet  MATH  Google Scholar 

  24. Clementi F, Lenci S, Rega G (2016) Cross-checking asymptotics and numerics in the hardening/softening behaviour of timoshenko beams with axial end spring and variable slenderness. Arch Appl Mech 87(5):865–880. https://doi.org/10.1007/s00419-016-1159-z

    Article  Google Scholar 

  25. Lenci S, Clementi F, Rega G (2017) Comparing nonlinear free vibrations of timoshenko beams with mechanical or geometric curvature definition. Procedia IUTAM 20:34–41. https://doi.org/10.1016/j.piutam.2017.03.006

    Article  Google Scholar 

  26. Kloda L, Lenci S, Warminski J (2018) Nonlinear dynamics of a planar beam–spring system: analytical and numerical approaches. Nonlinear Dyn 94(3):1721–1738. https://doi.org/10.1007/s11071-018-4452-2

    Article  Google Scholar 

  27. Alfosail FK, Younis MI (2018) Two-to-one internal resonance of an inclined marine riser under harmonic excitations. Nonlinear Dyn 95(2):1301–1321. https://doi.org/10.1007/s11071-018-4630-2

    Article  MATH  Google Scholar 

  28. Alfosail FK, Younis MI (2019) Three-to-one internal resonance of inclined marine riser. Int J Non-Linear Mech 109:107–117. https://doi.org/10.1016/j.ijnonlinmec.2018.11.008

    Article  MATH  Google Scholar 

  29. Alfosail FK, Younis MI (2019) Multifrequency excitation of an inclined marine riser under internal resonances. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05136-w

    Article  MATH  Google Scholar 

  30. Mazzilli CEN, Sanches CT, Baracho Neto OGP, Wiercigroch M, Keber M (2008) Non-linear modal analysis for beams subjected to axial loads: Analytical and finite-element solutions. Int J Non-Linear Mech 43:551–561. https://doi.org/10.1016/j.ijnonlinmec.2008.04.004

    Article  MATH  Google Scholar 

  31. Neto AG, Martins CA, Pimenta PM (2013) Static analysis of offshore risers with a geometrically-exact 3d beam model subjected to unilateral contact. Comput Mech 53(1):125–145. https://doi.org/10.1007/s00466-013-0897-9

    Article  MathSciNet  Google Scholar 

  32. Neto AG (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454. https://doi.org/10.1016/j.engstruct.2016.07.005

    Article  Google Scholar 

  33. Neto AG (2019) Giraffe user’s manual - generic interface readily accessible for finite elements. http://sites.poli.usp.br/p/alfredo.gay/. Accessed 25 Jan 2019

  34. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, Hoboken

    MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the São Paulo Research Foundation (FAPESP) for research grants n. 2016/25457-1 and 2017/16578-2, the latter a financial support to his internship at Università Politecnica delle Marche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Jorge Vernizzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernizzi, G.J., Lenci, S. & Rosa Franzini, G. A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales. Meccanica 55, 2423–2437 (2020). https://doi.org/10.1007/s11012-020-01247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01247-6

Keywords

Navigation