Skip to main content
Log in

Novel nano triphasic bioceramic composite coating on 316L SS by electrophoretic deposition process for enhanced corrosion resistance and cell proliferation

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This work mainly focuses on the preparation of novel nano triphasic bioceramic composite (nanoHAP/nanoβ-TCP/ nanoTiO2) (NTPC) coating on 316L Stainless Steel (316L SS) by an electrophoretic deposition process (EPD) followed by sintering in a vacuum atmosphere for 1 h at 800 °C. This type of composite coatings is prepared for the first time owing to the amelioration of the implant by improving the surface properties such as corrosion resistance, osseointegration, and biocompatibility. The NTPC coating on 316L SS were studied by X-ray diffraction, FT-IR spectroscopy, FESEM with EDS, AFM, adhesion strength, and cell culture studies. The electrochemical performance of the NTPC coated 316L SS samples were carried out by open circuit potential (OCP)-time measurements, electrochemical impedance spectroscopic (EIS) and cyclic potentiodynamic polarization (CPP) studies in Hank’s solution. In vitro studies for these coated samples indicate their non-toxic nature in the presence of MC3T3-E1 osteoblast cell along with high proliferation. The results showed that the NTPC coatings exhibit superior biocompatibility and enhanced corrosion resistance over 316L SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fujiwara, K., Okada, M., Takeda, S.: A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method. Mater. Sci. Eng. C. 35, 259–266 (2014)

    Article  CAS  Google Scholar 

  2. Dunne, F., Roche, K., Twomey, B., Stanton, T.: Deposition of hydroxyapatite onto shape memory NiTi wire. Mater. Lett. 176, 185–188 (2016)

    Article  CAS  Google Scholar 

  3. Kim, S.H., Subramanian, G.O., Kim, C., Jang, C., Park, K.M.: Surface modification of austenitic stainless steel for corrosion resistance in high temperature supercritical-carbon dioxide environment. Surf. Coat. Technol. 349, 415–425 (2018)

    Article  CAS  Google Scholar 

  4. Bertero, E., Hasegawa, M., Staubli, S., Pellicer, E., Herrmann, I.K., Sort, J., Michler, J., Philippe, L.: Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties. Surf. Coat. Technol. 349, 745–751 (2018)

    Article  CAS  Google Scholar 

  5. Adraider, Y., Pang, Y.X., Sharp, M.C., Hodgson, S.N., Nabhani, F., Al-Waidh, A.: Fabrication of titania coatings on stainless steel via laser-induced deposition of colloidal titanium oxide from sol–gel suspension. Mater. Chem. Phys. 138, 245–252 (2013)

    Article  CAS  Google Scholar 

  6. Hidalgo-Robatto, B.M., Aguilera-Correa, J.J., López-Álvarez, M., Romera, D., Esteban, J., González, P., Serra, J.: Fluor-carbonated hydroxyapatite coatings by pulsed laser deposition to promote cell viability and antibacterial properties. Surf. Coat. Technol. 349, 736–744 (2018)

    Article  CAS  Google Scholar 

  7. Liu, G., Wang, J., Bian, K., Zhu, P.: Preparation and characterization of nanostructured dibasic calcium phosphate coating on magnesium alloy wire. Mater. Lett. 209, 323–326 (2017)

    Article  CAS  Google Scholar 

  8. Mazigi, O., Kannan, M.B., Xu, J., Choe, H.C., Ye, Q.: Biocompatibility and degradation of a low elastic modulus Ti-35Nb-3Zr alloy: nanosurface engineering for enhanced degradation resistance. ACS Biomater Sci Eng. 3, 509–517 (2017)

    Article  CAS  Google Scholar 

  9. Hiromoto, S.: Self-healing property of hydroxyapatite and octacalcium phosphate coatings on pure magnesium and magnesium alloy. Corros. Sci. 100, 284–294 (2015)

    Article  CAS  Google Scholar 

  10. Benea, L., Danaila, E., Ponthiaux, P.: Effect of titania anodic formation and hydroxyapatite electrodeposition on electrochemical behaviour of Ti–6Al–4V alloy under fretting conditions for biomedical application. Corros. Sci. 91, 262–271 (2015)

    Article  CAS  Google Scholar 

  11. Liu, Y.C., Lin, G.S., Wang, J.Y., Cheng, C.S., Yang, Y.C., Lee, B.S., Tung, K.L.: Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying. Surf. Coat. Technol. 349, 357–363 (2018)

    Article  CAS  Google Scholar 

  12. Hu, J., Yang, Z., Zhou, Y.: Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. J. Mater. Sci. Mater. Med. 26, 257–269 (2015)

    Article  Google Scholar 

  13. Kim, H.W., Kim, H.E., Salih, V., Knowles, J.C.: Hydroxyapatite and titania sol–gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. J Biomed Mater Res B. 72, 1–8 (2005)

    Article  Google Scholar 

  14. Amaravathy, P., Sathyanarayanan, S., Sowndarya, S., Rajendran, N.: Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceram. Int. 40, 6617–6630 (2014)

    Article  CAS  Google Scholar 

  15. Ananth, K.P., Nathanael, A.J., Jose, S.P., Oh, T.H., Mangalaraj, D., Ballamurugan, A.M.: Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties. Appl. Surf. Sci. 353, 189–199 (2015)

    Article  Google Scholar 

  16. Mohan, L., Durgalakshmi, D., Geetha, M., Sankara Narayanan, T.S.N., Asokamani, R.: Electrophoretic deposition of nanocomposite (HAp+ TiO2) on titanium alloy for biomedical applications. Ceram. Int. 38, 3435–3443 (2012)

    Article  CAS  Google Scholar 

  17. Poorraeisi, M., Abdollah, A.: The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel. Surf. Coat. Technol. 339, 199–207 (2018)

    Article  CAS  Google Scholar 

  18. Javidi, M., Bahrololoom, M.E., Javadpour, S., Ma, J.: In vitro electrochemical evaluation and phase purity of natural hydroxyapatite coating on medical grade 316L stainless steel. Mater. Corros. 60, 336–343 (2009)

    Article  CAS  Google Scholar 

  19. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)

    Article  CAS  Google Scholar 

  20. Francisco, M.S.P., Mastelaro, V.R.: Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chem. Mater. 14, 2514–2518 (2002)

    Article  CAS  Google Scholar 

  21. You, Y.F., Xu, C.H., Xu, S.S., Cao, S., Wang, J.P., Huang, Y.B., Shi, S.Q.: Structural characterization and optical property of TiO2 powders prepared by the sol–gel method. Ceram. Int. 40, 8659–8666 (2014)

    Article  CAS  Google Scholar 

  22. Mohan, L., Anandan, C., Rajendran, N.: Electrochemical behaviour and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Mater. Sci. Eng. C. 50, 394–401 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Manonmani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manonmani, R. Novel nano triphasic bioceramic composite coating on 316L SS by electrophoretic deposition process for enhanced corrosion resistance and cell proliferation. J Aust Ceram Soc 57, 205–213 (2021). https://doi.org/10.1007/s41779-020-00526-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00526-5

Keywords

Navigation