Skip to main content
Log in

A novel H-plane loaded on a double-staggered grating waveguide slow-wave structure for W-band traveling-wave tubes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel H-plane loaded on a double-staggered grating waveguide (DSGW) slow-wave structure (SWS) is proposed. The main advantage of this SWS is its high interaction impedance and low phase velocity, based on which higher output power can be expected. Electromagnetic characteristics and particle-in-cell simulations were performed using CST Microwave Studio software. The dispersion diagram of the SWS was optimized for a central frequency of 94 GHz which corresponds to a beam voltage of 13.2 kV in the second spatial harmonic (2\(\pi\)–3\(\pi\)). A sheet electron beam with a current of 200 mA is used to interact with the longitudinal electric field. The reflection signal at the input port is below −15 dB for frequencies of 89–98 GHz and a small-signal gain of 35 dB is achieved at the output port for a tube length of 80 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Srivastava, V.: THz vacuum microelectronic devices. J. Phys. Conf. Ser. 114, 012015 (2008). https://doi.org/10.1088/1742-6596/114/1/012015

    Article  Google Scholar 

  2. Barker, R.J., Luhmann, N.C., Booske, J.H., Nusinovich, G.S.: Modern microwave and millimeter-wave power electronics. In: Barker, R.J., Luhmann, N.C., Booske, J.H., Nusinovich, G.S. (eds.), Modern Microwave and Millimeter-Wave Power Electronics, Wiley-VCH, p. 872. ISBN 0-471-68372-8 (2005)

  3. Cook, A.M., Joye, C.D., Albright, B.S., Calame, J.P., Abe, D.K.: Microfabrication methods for w-band TWT circuits. In: 2016 IEEE International Vacuum Electronics Conference (IVEC), IEEE, pp. 1–2(2016). https://doi.org/10.1109/IVEC.2016.7561800

  4. Sharma, R.K., Grede, A., Chaudhary, S., Srivastava, V., Henke, H.: Design of folded waveguide slow-wave structure for \({W}\)-band TWT. IEEE Trans. Plasma Sci. 42(10), 3430–3436 (2014). https://doi.org/10.1109/TPS.2014.2352267

    Article  Google Scholar 

  5. Tian, Y., Yue, L., Zhou, Q., Wei, Y., Wei, Y., Gong, Y.: Investigation on sheet beam folded V-shape groove waveguide for millimeter-wave TWT. IEEE Trans. Plasma Sci. 44(8), 1363–1368 (2016). https://doi.org/10.1109/TPS.2016.2582505

    Article  Google Scholar 

  6. Guo, G., Wei, Y., Yue, L., Gong, Y., Xiong, X., He, J., Zhao, G., Wang, W., Park, G.-S.: A tapered ridge-loaded folded waveguide slow-wave structure for millimeter-wave traveling-wave tube. J. Infrared Millim. Terahertz Waves 33(2), 131–140 (2012). https://doi.org/10.1007/s10762-011-9852-z

    Article  Google Scholar 

  7. Srivastava, A., Christie, V.L.: Design of a high gain and high efficiency w-band folded waveguide TWT using phase-velocity taper. J. Electromagn. Waves Appl. 32(10), 1316–1327 (2018). https://doi.org/10.1080/09205071.2018.1435309

    Article  Google Scholar 

  8. Wang, S., Aditya, S.: Wideband power combining of four microfabricated W-band traveling-wave tubes. IEEE Trans. Electron Dev. 64(9), 3849–3856 (2017). https://doi.org/10.1109/TED.2017.2720191

    Article  Google Scholar 

  9. Ulisse, G., Krozer, V.: \(W\)-band traveling wave tube amplifier based on planar slow wave structure. IEEE Electron Dev. Lett. 38(1), 126–129 (2017)

    Article  Google Scholar 

  10. Sengele, S., Jiang, H., Booske, J.H., Kory, C.L., Weide, D.W.V., Ives, R.L.: Microfabrication and characterization of a selectively metallized W-band meander-line TWT circuit. IEEE Trans. Electron Dev. 56(5), 730–737 (2009). https://doi.org/10.1109/TED.2009.2015416

    Article  Google Scholar 

  11. Billa, L.R., Akram, M.N., Paoloni, C., Chen, X.: \({H}\)- and \({E}\)-plane loaded slow wave structure for \({W}\)-band TWT. IEEE Trans. Electron Dev. 67(1), 309–313 (2020). https://doi.org/10.1109/TED.2019.2955825

    Article  Google Scholar 

  12. Lu, Z., Wen, R., Ge, W., Su, Z., Ding, K., Zhu, M., Wang, Z., Tang, T.: Design of a low-gain high-power w-band sheet-beam traveling wave tube using a double-staggered grating slow wave structure. J. Electromagn. Waves Appl. 33(15), 1996–2008 (2019). https://doi.org/10.1080/09205071.2019.1661798

    Article  Google Scholar 

  13. Lai, J., Gong, Y., Xiong, X., Wei, Y., Duan, Z., Wang, W., Feng, J.: W-band 1-kw staggered double-vane traveling-wave tube. IEEE Trans. Electron Dev. 59(2), 496–503 (2011). https://doi.org/10.1109/TED.2011.2174458

    Article  Google Scholar 

  14. Fang, S., Jin, X., Jiang, X., Lei, X., Gangxiong, W., Li, Q., Ding, C., Xiang, Yu., Wang, W., Gong, Y., et al.: Study on w-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide. AIP Adv. 8(5), 055116 (2018). https://doi.org/10.1063/1.5028300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Badri Ghavifekr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaeihaselghobi, A., Badri Ghavifekr, H. A novel H-plane loaded on a double-staggered grating waveguide slow-wave structure for W-band traveling-wave tubes. J Comput Electron 20, 575–581 (2021). https://doi.org/10.1007/s10825-020-01599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01599-y

Keywords

Navigation