Skip to main content
Log in

Numerical and experimental analysis of the structural performance of AM components built by fused filament fabrication

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This work analyses the performance of parts built by Additive Manufacturing (AM) using fused filament fabrication (FFF) demonstrating the correlation between the printing orientation and structural performance. FFF components present two regions showing different mechanical behaviour: the external contour and the inner structure (in-fills or lattice). The respective mechanical properties of the contour and the inner structure are obtained. In this work the inner structure is replaced by an anisotropic homogenized material. A Representative Volume Element with Periodic Boundary conditions is adopted to obtain the corresponding equivalent constitutive tensor. On the other hand, the contour is considered isotropic. The material characterization of both the in-fill and the contour is done following two complementary strategies: (1) an experimental campaign involving several tensile tests on FFF specimens; (2) a sensitivity analysis through numerical modelling. Performing experiments to obtain the material properties for contour and in-fill may be a challenging task. Thus, the numerical modelling and the optimization technique are used to obtain the material properties as a function of the filament properties. Calibration of the structural response of 3D-printed demonstrators under bending and torsion is done in order to optimize the material parameters of the numerical model by minimising the difference between the experimental and numerically computed structural stiffness. It is shown that assuming isotropic behaviour for the contour results in a negligible error. The AM software so calibrated can be used for analysing the mechanical performance of FFF components and selecting the optimal printing orientation as well as the contour thickness and in-fill density to satisfy the structural performance required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. D. Technology, Materialise fused deposition modeling. https://www.materialise.com/en/manufacturing/3d-printingtechnology/fused-deposition-modeling.

  2. Ultimaker. https://ultimaker.com/software/ultimaker-cura.

References

  • Adams, B., Ebeida, M., Eldred, M., Jakeman, J., Swiler, L., Bohnhoff, W., Dalbey, K., Eddy, J., Hu, K., Vigil, D., Bauman, L.: DAKOTA: a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis, version 5.3.1 reference manual. Technical Report, U.S. Department of Energy (2013)

  • Attaran, M.: The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60(5), 677–688 (2017)

    Article  Google Scholar 

  • Atzeni, E., Salmi, A.: Economics of additive manufacturing for end-usable metal parts. Int. J. Adv. Manuf. Technol. 62(9–12), 1147–1155 (2012)

    Article  Google Scholar 

  • Bellini, A., Güçeri, S.: Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9(4), 252–264 (2003)

    Article  Google Scholar 

  • Brenken, B., Barocio, E., Favaloro, A., Kunc, V., Pipes, R.B.: Fused filament fabrication of fiber-reinforced polymers: a review. Addit. Manuf. 21, 1–16 (2018)

    Google Scholar 

  • Cantrell, J.T., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., Ifju, P.G.: Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 23(4), 811–824 (2017)

    Article  Google Scholar 

  • Casavola, C., Cazzato, A., Moramarco, V., Pappalettere, C.: Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453–458 (2016)

    Article  Google Scholar 

  • Cervera, M., Agelet de Saracibar, C., Chiumenti, M.: COMET: Coupled Mechanical and Thermal Analysis, Data Input Manual, Version 5. 0, Technical Report IT-308 (2002). http://www.cimne.upc.es

  • Dadvand, P., Rossi, R., Oñate, E.: An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch. Comput. Methods Eng. 17(3), 253–297 (2010)

    Article  Google Scholar 

  • Delfs, P., Tows, M., Schmid, H.J.: Optimized build orientation of additive manufactured parts for improved surface quality and build time. Addit. Manuf. 12, 314–320 (2016)

    Google Scholar 

  • Domingo-Espin, M., Puigoriol-Forcada, J.M., Garcia-Granada, A.A., Llumà, J., Borros, S., Reyes, G.: Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater. Des. 83, 670–677 (2015)

    Article  Google Scholar 

  • Durgun, I., Ertan, R.: Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp. J. 20(3), 228–235 (2014)

    Article  Google Scholar 

  • Garg, A., Bhattacharya, A.: An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study. Int. J. Mech. Sci. 120, 225–236 (2017)

    Article  Google Scholar 

  • Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, New York (2010)

    Book  Google Scholar 

  • Gray, R.W., Baird, D.G., Helge Bøhn, J.: Effects of processing conditions on short TLCP fiber reinforced FDM parts. Rapid Prototyp. J. 4(1), 14–25 (2002)

    Article  Google Scholar 

  • Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8(3), 215–243 (2013)

    Article  Google Scholar 

  • Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 5(11), 357–372 (1963)

    Article  Google Scholar 

  • Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

  • Kotlinski, J.: Mechanical properties of commercial rapid prototyping materials. Rapid Prototyp. J. 20(6), 499–510 (2014)

    Article  Google Scholar 

  • Lloberas-Valls, O., Rixen, D.J., Simone, A., Sluys, L.J.: Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Comput. Methods Appl. Mech. Eng. 200(13), 1577–1590 (2011)

    Article  MathSciNet  Google Scholar 

  • Lloberas-Valls, O., Rixen, D.J., Simone, A., Sluys, L.J.: Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int. J. Numer. Meth. Eng. 89(11), 1337–1366 (2012)

    Article  MathSciNet  Google Scholar 

  • Lourenço, P.B., Rots, J.G.: Multisurface interface model for analysis of masonry structures. J. Eng. Mech. 123(7), 660–668 (1997)

    Article  Google Scholar 

  • Mandel, J.: Plasticité classique et viscoplasticité. Springer-Verlag, Berlin (1971)

    MATH  Google Scholar 

  • McLouth, T.D., Severino, J.V., Adams, P.M., Patel, D.N., Zaldivar, R.J.: The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Addit. Manuf. 18, 103–109 (2017)

    Google Scholar 

  • Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018)

    Article  Google Scholar 

  • Nguyen, V.P., Stroeven, M., Sluys, L.J.: Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J. Multiscale Model. 3(04), 229–270 (2011)

    Article  MathSciNet  Google Scholar 

  • O’Connor, H.J., Dickson, A.N., Dowling, D.P.: Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Addit. Manuf. 22, 381–387 (2018)

    Google Scholar 

  • Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater Sci. 74, 401–477 (2015)

    Article  Google Scholar 

  • Oller, S., Miquel Canet, J., Zalamea, F.: Composite material behavior using a homogenization double scale method. J. Eng. Mech. 131(1), 65–79 (2005)

    Article  Google Scholar 

  • Otero, F., Martínez, X., Oller, S., Salomón, O.: Study and prediction of the mechanical performance of a nanotube-reinforced composite. Compos. Struct. 94, 2920–2930 (2012)

    Article  Google Scholar 

  • Otero, F., Oller, S., Martinez, X., Salomón, O.: Numerical homogenization for composite materials analysis. comparison with other micro mechanical formulations. Compos. Struct. 122, 405–416 (2015)

    Article  Google Scholar 

  • Peterson, A.M.: Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective. Addit. Manuf. 27, 363–371 (2019)

    Google Scholar 

  • Sillani, F., Kleijnen, R.G., Vetterli, M., Schmid, M., Wegener, K.: Selective laser sintering and multi jet fusion: process-induced modification of the raw materials and analyses of parts performance. Addit. Manuf. 27, 32–41 (2019)

    Google Scholar 

  • Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)

    Article  Google Scholar 

  • Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 3(1), 81–90 (2012). https://doi.org/10.1016/j.jare.2011.05.001.23

    Article  Google Scholar 

  • Suquet, P.: Local and global aspects in the mathematical theory of plasticity. Plasticity Today 279–309 (1985)

  • Thrimurthulu, K., Pandey, P.M., Reddy, N.V.: Optimum part deposition orientation in fused deposition modeling. Int. J. Mach. Tools Manuf. 44(6), 585–594 (2004)

    Article  Google Scholar 

  • Townsend, A., Senin, N., Blunt, L., Leach, R.K., Taylor, J.S.: Surface texture metrology for metal additive manufacturing: a review. Precis. Eng. 46, 34–47 (2016)

    Article  Google Scholar 

  • Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014)

    Article  Google Scholar 

  • Yang, Q., Li, H., Zhai, Y., Li, X., Zhang, P.: The synthesis of epoxy resin coated Al2O3 composites for selective laser sintering 3D printing. Rapid Prototyp. J. 24(6), 1059–1066 (2018)

    Article  Google Scholar 

  • Zaldivar, R.J., Witkin, D.B., McLouth, T., Patel, D.N., Schmitt, K., Nokes, J.P.: Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D Printed ULTEM® 9085 Material. Addit. Manuf. 13, 71–80 (2017)

    Google Scholar 

  • Ziemian, C.W., Ziemian, R.D., Haile, K.V.: Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts. Mater. Des. 109, 209–218 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the RIS3CAT Llavor 3D Community co-financed by the Generalitat de Catalunya (ACCIÓ) through the projects TRANSPORT COMRDI16-1-0010 - 00 and PRO2 COMRDI16-1-0009-04. Financial support from the Spanish Ministry of Economy and Business via the ADaMANT (Computational Framework for Additive Manufacturing of Titanium Alloy) project (Proyectos de I + D (Excelencia) DPI2017-85998-P) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Dialami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dialami, N., Chiumenti, M., Cervera, M. et al. Numerical and experimental analysis of the structural performance of AM components built by fused filament fabrication. Int J Mech Mater Des 17, 225–244 (2021). https://doi.org/10.1007/s10999-020-09524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09524-8

Keywords

Navigation