Skip to main content
Log in

Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Chemistry in the ultracold regime enables fully quantum-controlled interactions between atoms and molecules, leading to the discovery of the hidden mechanisms in chemical reactions which are usually curtained by thermal averaging in the high temperature. Recently a couple of diatomic molecules have been cooled to ultracold regime based on laser cooling techniques, but the chemistry associated with these simple molecules is highly limited. In comparison, free radicals play a major role in many important chemical reactions, but yet to be cooled to submillikelvin temperature. Here we propose a novel method of decelerating CH3, the simplest polyatomic free radical, with lithium atoms simultaneously by travelling wave magnetic decelerator. This scheme paves the way towards co-trapping CH3 and lithium, so that sympathetical cooling can be used to preparing ultracold free radical sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)

    Article  ADS  Google Scholar 

  2. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)

    Article  Google Scholar 

  3. D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)

    Article  ADS  Google Scholar 

  4. P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)

    Article  ADS  Google Scholar 

  5. A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)

    Article  Google Scholar 

  6. A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)

    Article  ADS  Google Scholar 

  7. B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)

    Article  ADS  Google Scholar 

  8. N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)

    Article  ADS  Google Scholar 

  9. R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)

    Article  Google Scholar 

  10. M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)

    Article  ADS  Google Scholar 

  11. S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)

    Article  ADS  Google Scholar 

  12. B. K. Stuhl, M. T. Hummon, and J. Ye, Cold state-selected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)

    Article  ADS  Google Scholar 

  13. O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017

  14. E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)

    Article  ADS  Google Scholar 

  15. T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)

    Article  ADS  Google Scholar 

  16. C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)

    Article  ADS  Google Scholar 

  17. J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. Commun. 10, 3771 (2019)

    Article  ADS  Google Scholar 

  18. J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’ Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)

    Article  ADS  Google Scholar 

  19. D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments, Science 357(6355), 990 (2017)

    Article  ADS  Google Scholar 

  20. V. Andreev and N. Hutzler, Improved limit on the electric dipole moment of the electron, Nature 562(7727), 355 (2018)

    Article  ADS  Google Scholar 

  21. T. Momose, H. Hoshina, N. Sogoshi, H. Katsuki, T. Wakabayashi, and T. Shida, Tunneling chemical reactions in solid parahydrogen: A case of CD3+H2→CD3H+H at 5 K, J. Chem. Phys. 108(17), 7334 (1998)

    Article  ADS  Google Scholar 

  22. H. Hoshina, M. Fushitani, T. Momose, and T. Shida, Tunneling chemical reactions in solid parahydrogen: Direct measurement of the rate constants of R+H2→RH+H (R=CD3,CD2H,CDH2,CH3) at 5 K, J. Chem. Phys. 120(8), 3706 (2004)

    Article  ADS  Google Scholar 

  23. A. W. Jasper, S. J. Klippenstein, L. B. Harding, and B. Ruscic, Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition, J. Phys. Chem. A 111(19), 3932 (2007)

    Article  Google Scholar 

  24. T. Momose, Y. Liu, S. Zhou, P. Djuricanin, and D. Carty, Manipulation of translational motion of methyl radicals by pulsed magnetic fields, Phys. Chem. Chem. Phys. 15(6), 1772 (2013)

    Article  Google Scholar 

  25. Y. Liu, S. Zhou, W. Zhong, P. Djuricanin, and T. Momose, One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules, Phys. Rev. A 91(2), 021403 (2015)

    Article  ADS  Google Scholar 

  26. B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)

    Article  ADS  Google Scholar 

  27. Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)

    Article  ADS  Google Scholar 

  28. N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)

    Article  ADS  Google Scholar 

  29. E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)

    Article  ADS  Google Scholar 

  30. E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)

    Article  Google Scholar 

  31. M. Jerkins, I. Chavez, U. Even, and M. Raizen, Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82(3), 033414 (2010)

    Article  ADS  Google Scholar 

  32. K. Melin, P. Nagornykh, Y. Lu, L. Hillberry, Y. Xu, and M. Raizen, Observation of a quasi-one-dimensional variation of the Stern-Gerlach effect, Phys. Rev. A 99(6), 063417 (2019)

    Article  ADS  Google Scholar 

  33. S. Bililign, B. C. Hattaway, and G. H. Jeung, Nonradiative energy transfer in Li*(3p)-CH4 collisions, J. Phys. Chem. A 106(2), 222 (2002)

    Article  Google Scholar 

  34. B. C. Hattaway, S. Bililign, L. Uhl, V. Ledentu, and G. H. Jeung, Energy transfer in Li(4p) + (Ar,H2,CH4) collisions, J. Chem. Phys. 120(4), 1739 (2004)

    Article  ADS  Google Scholar 

  35. K. Luria, N. Lavie, and U. Even, Dielectric barrier discharge source for supersonic beams, Rev. Sci. Instrum. 80(10), 104102 (2009)

    Article  ADS  Google Scholar 

  36. T. Tscherbul, H. G. Yu, and A. Dalgarno, Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap, Phys. Rev. Lett. 106(7), 073201 (2011)

    Article  ADS  Google Scholar 

  37. T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)

    Article  ADS  Google Scholar 

  38. A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)

    Article  ADS  Google Scholar 

  39. M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initio analysis and prospects for sympathetic cooling of SrOH (2Σ+) by Li (2S), Phys. Rev. A 95(6), 063421 (2017)

    Article  ADS  Google Scholar 

  40. D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, Observation of quantum diffractive collisions using shallow atomic traps, Phys. Rev. A 80(2), 022712 (2009)

    Article  ADS  Google Scholar 

  41. Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Yang Liu and Le Luo acknowledge helpful suggestion and discussion from Jiaming Li. Yang Liu acknowledges the financial support from the National Natural Science Foundation of China (NSFC) under Grant No. 11974434, the Fundamental Research Funds for the Central Universities of Education of China under Grant No. 191gpy276, the Natural Science Foundation of Guangdong Province under Grant No. 2020A1515011159. Le Luo received supports from NSFC under Grant No. 11774436, Guangdong Province Youth Talent Program under Grant No. 2017GC010656, Sun Yat-sen University Core Technology Development Fund, and the Key-Area Research and Development Program of GuangDong Province under Grant No. 2019B030330001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu or Le Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, L. Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms. Front. Phys. 16, 12504 (2021). https://doi.org/10.1007/s11467-020-1003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1003-3

Keywords

Navigation