Skip to main content
Log in

Loss of 5-Hydroxymethylcytosine is an Epigenetic Hallmark of Thyroid Carcinomas with TERT Promoter Mutations

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Epigenetic dysregulation is a hallmark of cancer, and aberrant methylation of cytosine residues plays a crucial role in abnormal gene expression in cancer cells. Recent studies demonstrate that 5-hydroxymethylcytosine (5-hmC) generated through 5-methylcytosine (5-mC) oxidation is significantly depleted in various cancers. However, whether 5-hmC levels change during the stepwise progression of thyroid carcinoma and the mechanisms underlying this effect remain unknown. The aims of this study were (i) to assess 5-hmC levels in normal and cancerous thyroid tissues, and (ii) identify clinicopathologic and genetic factors associated with the dysregulated hydroxymethylation of cytosine. Enzyme-linked immunosorbent assay (ELISA) showed that 5-hmC was significantly reduced in TERT promoter-mutated papillary thyroid carcinomas (PTCs) and anaplastic thyroid carcinomas (ATCs), while there was no significant difference in 5-hmC levels between TERT promoter-wild-type PTCs and normal thyroid tissues. Results of semi-quantitative analysis of 5-hmC through immunohistochemistry correlated well with those of ELISA and confirmed the loss of 5-hmC in tumor cells. Immunohistochemistry confirmed lower 5-hmC positivity in TERT promoter-mutated PTCs (n = 10) and ATCs (n = 4) than in normal thyroid tissues (= 8) and TERT promoter-wild-type PTCs (n = 63). Tumor size (> 1 cm) and advanced stage were associated with decreased global 5-hmC in PTCs, while age, gross extrathyroidal invasion, node metastasis, and BRAF mutation were not. Collectively, these findings demonstrated that loss of 5-hmC is an epigenetic hallmark of thyroid carcinomas with TERT promoter mutation, indicating that TERT promoter-mutated thyroid carcinoma has a distinct molecular profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cabanillas ME, McFadden DG, Durante C (2016) Thyroid cancer. Lancet 388:2783–2795. https://doi.org/10.1016/S0140-6736(16)30172-6

    Article  CAS  PubMed  Google Scholar 

  2. Huang FW, Hodis E, Xu MJ, et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–9. https://doi.org/10.1126/science.1229259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horn S, Figl A, Rachakonda PS, et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–61. https://doi.org/10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  4. Bullock M, Lim G, Zhu Y, et al (2019) ETS Factor ETV5 Activates the Mutant Telomerase Reverse Transcriptase Promoter in Thyroid Cancer. Thyroid 29:1623–1633. https://doi.org/10.1089/thy.2018.0314

    Article  CAS  PubMed  Google Scholar 

  5. Akıncılar SC, Khattar E, Boon PLS, et al (2016) Long-Range Chromatin Interactions Drive Mutant TERT Promoter Activation. Cancer Discov 6:1276–1291. https://doi.org/10.1158/2159-8290.CD-16-0177

    Article  PubMed  Google Scholar 

  6. Melo M, da Rocha AG, Vinagre J, et al (2014) TERT Promoter Mutations Are a Major Indicator of Poor Outcome in Differentiated Thyroid Carcinomas. J Clin Endocrinol Metab 99:E754–E765. https://doi.org/10.1210/jc.2013-3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vuong HG, Altibi AM, Duong UN, et al (2017) Role of molecular markers to predict distant metastasis in papillary thyroid carcinoma: Promising value of TERT promoter mutations and insignificant role of BRAF mutations—a meta-analysis. Tumor Biol 39:101042831771391. https://doi.org/10.1177/1010428317713913

    Article  CAS  Google Scholar 

  8. Oishi N, Kondo T, Nakazawa T, et al (2017) Frequent BRAF V600E and Absence of TERT Promoter Mutations Characterize Sporadic Pediatric Papillary Thyroid Carcinomas in Japan. Endocr Pathol 28:103–111. https://doi.org/10.1007/s12022-017-9470-y

    Article  CAS  PubMed  Google Scholar 

  9. Liu R, Xing M (2016) TERT promoter mutations in thyroid cancer. Endocr Relat Cancer 23:R143-55. https://doi.org/10.1530/ERC-15-0533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landa I, Ganly I, Chan T, et al (2013) Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. J Clin Endocrinol Metab 98:E1562–E1566. https://doi.org/10.1210/jc.2013-2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oishi N, Kondo T, Ebina A, et al (2017) Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Mod Pathol 30:1527–1537. https://doi.org/10.1038/modpathol.2017.75

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676–90. https://doi.org/10.1016/j.cell.2014.09.050

    Article  CAS  Google Scholar 

  13. Kondo T, Nakazawa T, Ma D, et al (2009) Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. Lab Investig 89:791–799. https://doi.org/10.1038/labinvest.2009.50

    Article  CAS  PubMed  Google Scholar 

  14. Lian CG, Xu Y, Ceol C, et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–46. https://doi.org/10.1016/j.cell.2012.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pronier E, Almire C, Mokrani H, et al (2011) Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 118:2551–5. https://doi.org/10.1182/blood-2010-12-324707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ko M, Huang Y, Jankowska AM, et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–43. https://doi.org/10.1038/nature09586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kraus TFJ, Globisch D, Wagner M, et al (2012) Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base,” are associated with anaplasia in human brain tumors. Int J cancer 131:1577–90. https://doi.org/10.1002/ijc.27429

    Article  CAS  PubMed  Google Scholar 

  18. Tong M, Gao S, Qi W, et al (2019) 5‑Hydroxymethylcytosine as a potential epigenetic biomarker in papillary thyroid carcinoma. Oncol Lett 18:2304–2309. https://doi.org/10.3892/ol.2019.10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu R, Bishop J, Zhu G, et al (2017) Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer. JAMA Oncol 3:202. https://doi.org/10.1001/jamaoncol.2016.3288

    Article  PubMed  Google Scholar 

  20. Paulsson JO, Olander A, Haglund F, et al (2018) TERT Immunohistochemistry Is a Poor Predictor of TERT Promoter Mutations and Gene Expression in Follicular Thyroid Carcinoma. Endocr Pathol 29:380–383. https://doi.org/10.1007/s12022-018-9551-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Dresser K, Chen BJ (2019) Loss of 5‐hydroxymethylcytosine immunohistochemical expression is a useful diagnostic aid for distinguishing hepatocellular carcinoma in cytology fine needle aspiration specimens. Cytopathology 30:492–498. https://doi.org/10.1111/cyt.12719

    Article  PubMed  Google Scholar 

  22. Haglund F, Juhlin CC, Brown T, et al (2015) TERT promoter mutations are rare in parathyroid tumors. Endocr Relat Cancer 22:L9–L11. https://doi.org/10.1530/ERC-15-0121

    Article  CAS  PubMed  Google Scholar 

  23. Barazeghi E, Gill AJ, Sidhu S, et al (2016) 5-Hydroxymethylcytosine discriminates between parathyroid adenoma and carcinoma. Clin Epigenetics 8:31. https://doi.org/10.1186/s13148-016-0197-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kroeze LI, van der Reijden BA, Jansen JH (2015) 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer. Biochim Biophys Acta - Rev Cancer 1855:144–154. https://doi.org/10.1016/j.bbcan.2015.01.001

    Article  CAS  Google Scholar 

  25. Pfeifer GP, Kadam S, Jin S-G (2013) 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 6:10. https://doi.org/10.1186/1756-8935-6-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lemonnier F, Couronne L, Parrens M, et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH -like features and adverse clinical parameters. Blood 120:1466–1470. https://doi.org/10.1182/blood-2012-02-408542

    Article  CAS  PubMed  Google Scholar 

  27. Lemonnier F, Poullot E, Dupuy A, et al (2018) Loss of 5-hydroxymethylcytosine is a frequent event in peripheral T-cell lymphomas. Haematologica 103:e115–e118. https://doi.org/10.3324/haematol.2017.167973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Figueroa ME, Abdel-Wahab O, Lu C, et al (2010) Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell 18:553–567. https://doi.org/10.1016/j.ccr.2010.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dang L, White DW, Gross S, et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744. https://doi.org/10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Couronné L, Bastard C, Bernard OA (2012) TET2 and DNMT3A Mutations in Human T-Cell Lymphoma. N Engl J Med 366:95–96. https://doi.org/10.1056/NEJMc1111708

    Article  PubMed  Google Scholar 

  31. Murugan AK, Bojdani E, Xing M (2010) Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem Biophys Res Commun 393:555–559. https://doi.org/10.1016/j.bbrc.2010.02.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hemerly JP, Bastos AU, Cerutti JM (2010) Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J Endocrinol 163:747–755. https://doi.org/10.1530/EJE-10-0473

    Article  CAS  PubMed  Google Scholar 

  33. Rakheja D, Boriack RL, Mitui M, et al (2011) Papillary thyroid carcinoma shows elevated levels of 2-hydroxyglutarate. Tumor Biol 32:325–333. https://doi.org/10.1007/s13277-010-0125-6

    Article  CAS  Google Scholar 

  34. Shenoy N, Creagan E, Witzig T, Levine M (2018) Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly. Cancer Cell 1–7. https://doi.org/10.1016/j.ccell.2018.07.014

  35. Shenoy N, Bhagat TD, Cheville J, et al (2019) Ascorbic acid-induced TET activation mitigates adverse hydroxymethylcytosine loss in renal cell carcinoma. J Clin Invest 130:1612–1625. https://doi.org/10.1172/JCI98747

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Wakaba Iha, Mr. Yoshihito Koshimizu, and Mr. Tadashi Iwato for technical support, and Ms. Kayoko Kono for executive assistance.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 19K07412.

This study was approved by the Institutional Review Board of the University of Yamanashi.

Author information

Authors and Affiliations

Authors

Contributions

NO designed the work, performed the analyses, interpreted data, and drafted the manuscript. HGV performed analysis and interpreted data. KM and TK interpreted data and supervised the research. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Naoki Oishi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics approval

Approved by the Institutional Review Board of the University of Yamanashi.

Consent to participate

Approved with the use of an opt-out methodology based on the low risk to the patients.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, N., Vuong, H.G., Mochizuki, K. et al. Loss of 5-Hydroxymethylcytosine is an Epigenetic Hallmark of Thyroid Carcinomas with TERT Promoter Mutations. Endocr Pathol 31, 359–366 (2020). https://doi.org/10.1007/s12022-020-09652-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09652-z

Keywords

Navigation