Skip to main content
Log in

Nonlinear hybrid continuum–discrete dynamic model of influence of hydrogen concentration on strength of materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A new nonlinear lattice model for an influence of the hydrogen concentration on the elastic constants of the lattice model of a material is developed. A weakly nonlinear long-wavelength continuum model is considered, and a model nonlinear equation for the dynamics of concentration of hydrogen is obtained asymptotically. The model predicts a decrease in the stiffness coefficient as well as a light local moving increase due to the localized nonlinear concentration wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Troiano, A.R.: The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM. 52, 54–80 (1960)

    Google Scholar 

  2. Oriani, R.A.: A mechanistic theory of hydrogen embrittlement of steels. Berichte der Bunsengesellschaft für physikalische Chemie 76, 848–857 (1972)

    Google Scholar 

  3. Jemblie, L., Olden, V., Akselsen, O.M.: A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160411 (2017)

    Article  ADS  Google Scholar 

  4. Birnbaum, H.K., Sofronis, P.: Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191–202 (1994)

    Article  Google Scholar 

  5. Sofronis, P., Birnbaum, H.K.: Mechanics of the hydrogen-dislocation-impurity interactions I. Increasing shear modulus. J. Mech. Phys. Solid. 43, 49–90 (1995)

    Article  ADS  Google Scholar 

  6. Lynch, S.: Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 30, 105–123 (2012)

    Google Scholar 

  7. Djukic, M.B., et al.: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion. Eng. Fract. Mech. 216, 106528 (2019)

    Article  Google Scholar 

  8. Sofronis, P., Liang, Y., Aravas, N.: Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur. J. Mech. A. Solids 20, 857–872 (2001)

    Article  Google Scholar 

  9. Olden, V., Thaulow, C., Johnsen, R.: Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. Mater. Des. 29, 1934–1948 (2008)

    Article  Google Scholar 

  10. Belyaev, A.K., et al.: The description of deformation and destruction of materials containing hydrogen by means of rheological model. St. Petersburg Polytechn. Univ. J. Phys. Math. 1, 305–314 (2015)

    Google Scholar 

  11. Belyaev, A.K., et al.: Surface effect of the waves of plastic deformation and hydrogen distribution in metals. In: Proceedings of the International Conference Days on Diffraction 2017, IEEE. pp. 45–50 (2017)

  12. Belyaev, A.K., Blekhman, I.I., Polyanskiy, V.A.: Equation for the evolution of trapped hydrogen in an elastic rod subjected to high-frequency harmonic excitation. Acta Mech. 227, 1515–1518 (2016)

    Article  MathSciNet  Google Scholar 

  13. Zhang, Z., Obasi, G., Morana, R., Preuss, M.: Hydrogen assisted crack initiation and propagation in a nickel-based superalloy. Acta Mater. 113, 272–283 (2016)

    Article  ADS  Google Scholar 

  14. Li, H.F., Wang, S.G., Zhang, P., Qu, R.T., Zhang, Z.F.: Crack propagation mechanisms of AISI 4340 steels with different strength and toughness. Mater. Sci. Eng. A 729, 130–140 (2018)

    Article  Google Scholar 

  15. Bai, P.P., Zhou, J., Luo, B.W., Zheng, S.Q., Wang, P.Y., Tian, Y.: Hydrogen embrittlement of \(X80\) pipeline steel in\( H_2 S\) environment: effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging-releasing-recharging cycles. Int. J. Minerals Metall. Mater. 27(1), 63–73 (2020)

    Article  ADS  Google Scholar 

  16. Taha, A., Sofronis, P.: A micromechanics approach to the study of hydrogen transport and embrittlement. Eng. Fract. Mech. 68(6), 803–837 (2001)

    Article  Google Scholar 

  17. Belyaev, A.K., Polyanskiy, A.M., Polyanskiy, V.A., Yakovlev, Y.A.: Parametric instability in cyclic loading as the cause of fracture of hydrogenous materials. Mech. Solids 47(5), 533–537 (2012)

    Article  ADS  Google Scholar 

  18. Barrer, O., et al.: Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. J. Mater. Sci. 53, 6251–6290 (2018)

    Article  ADS  Google Scholar 

  19. Lilin, Lu, et al.: Hydrogen embrittlement and improved resistance of Al addition in twinning-induced plasticity steel: first-principles study. Materials 12, 1341 (2019)

    Article  ADS  Google Scholar 

  20. Krawczyk, J., Owczarek, A.L., Prellberg, T.: Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers. Phys. A 388, 104–112 (2009)

    Article  Google Scholar 

  21. Fallahmohammadi, E., Bolzoni, F., Lazzari, L.: Measurement of lattice and apparent diffusion coefficient of hydrogen in \(X65\) and \(F22\) pipeline steels. Int. J. Hydrogen Energy 38, 2531–2543 (2013)

    Article  Google Scholar 

  22. Mazzolai, F.M., Birnbaum, H.K.: Elastic constants and ultrasonic attenuation of the \(\alpha \)-\(\alpha \)’ phase of the \(Nb-H(D)\) system. I: Results. J. Phys. F Met. Phys. 15, 507–524 (1985)

    Article  ADS  Google Scholar 

  23. Eremeyev, V.A., Pietraszkiewicz, W.: Nonlinear resultant theory of shells accounting for thermodiffusion. CMAT (2020). https://doi.org/10.1007/s00161-020-00927-8

    Article  Google Scholar 

  24. Indeitsev, D., Semenov, B.: About a model of structural-phase transformations under hydrogen influence. Acta Mech. 195(1–4), 295–304 (2008)

    Article  Google Scholar 

  25. Porubov, A.V., Belyaev, A.K., Polyanskiy, V.A.: Nonlinear modeling of dynamics of hydrogen concentration in alloys. Commun. Nonlinear Sci. Numer. Simulat. 90, 10540 (2020)

    Article  MathSciNet  Google Scholar 

  26. Pyun, S.-I., et al.: Electrochemistry of Insertion Materials for Hydrogen and Lithium, Monographs in Electrochemistry. Springer, Berlin (2012)

    Book  Google Scholar 

  27. Krom, A.H.M., Bakker, A.D.: Hydrogen Trapping Models in Steel. Metall. Mater. Trans. 31B, 1475 (2000)

    Article  Google Scholar 

  28. Mazzolai, F.M., Birnbaum, H.K.: Elastic constants and ultrasonic attenuation of the \(a-a^{\prime }\) phase of the Nb-H(D) system 11. : interpretation of results. J. Phys. F: Met. Phys. 15, 525–542 (1985)

    Article  ADS  Google Scholar 

  29. Mazzolai, G.: Recent progresses in the understanding of the elastic and anelastic properties of H-free, H-doped and H-contaminated NiTi based alloys. AIP Adv. 1, 040701 (2011)

    Article  ADS  Google Scholar 

  30. Coluzzi, B., Costa, C., Marzola, P., Mazzolai, F.M.: Elastic constants of a \(Pd_{85}Pt_{15}\) single crystal containing hydrogen. J. Phys. Condens. Matter 1, 6335–6342 (1989)

    Article  ADS  Google Scholar 

  31. Mirzoev, FKh, Panchenko, V.Ya., Shelepin, L.A.: X’Laser Control of Processes in Solids. Physics- Uspekhi 39, 1–29 (1996)

    Article  ADS  Google Scholar 

  32. Mirzoev, FKh, Shelepin, L.A.: Nonlinear strain waves and densities of defects in metal plates induced by external energy fluxes’. Tech. Phys. 46, 952–955 (2001)

    Article  Google Scholar 

  33. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  34. Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55, 35–60 (2002)

    Article  ADS  Google Scholar 

  35. Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media. Math. Probl. Eng. (2010). https://doi.org/10.1155/2010/986242

    Article  MATH  Google Scholar 

  36. Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018)

    Article  ADS  Google Scholar 

  37. Andrianov, I.V., Danishevskyy, V.V., Rogerson, G.: Vibrations of nonlinear elastic lattices: low- and high-frequency dynamic models, internal resonances and modes coupling. Proc. R. Soc. A 476, 20190532 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Frolova, K., Polyanskiy, V., Tretyakov, D., Yakovlev, Y.: Identification of zones of local hydrogen embrittlement of metals by the acoustoelastic effect. In: Altenbach, H., Eremeyev, V., Pavlov, I., Porubov, A. (eds.) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol. 122, pp. 495–503. Springer, Cham (2020)

    Google Scholar 

  39. Tretyakov, D., Belyaev, A., Polyanskiy, V., Stepanov, A., Yakovlev, Y.: Correlation of acoustoelasticity with hydrogen saturation during destruction. E3S Web Conf. EDP Sci. 121, 01016 (2019)

    Article  Google Scholar 

  40. Tretyakov, D., Belyaev, A., Galyautdinova, A., Polyanskiy, V., Strekalovskaya, D.: Investigation of the corrosion process and destruction of metals by using acoustodamage method. E3S Web Conf. EDP Sci. 121, 01017 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The study of AKB and VAP was funded by Russian Foundation for Basic Research, Projects 20-08-01100 and 18-08-00201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Porubov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porubov, A.V., Belyaev, A.K. & Polyanskiy, V.A. Nonlinear hybrid continuum–discrete dynamic model of influence of hydrogen concentration on strength of materials. Continuum Mech. Thermodyn. 33, 933–941 (2021). https://doi.org/10.1007/s00161-020-00936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00936-7

Keywords

Navigation