Skip to main content
Log in

The \(\psi \)-Hilfer fractional calculus of variable order and its applications

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present the \( \psi \)-Hilfer fractional derivatives of variable order (FDVO) of 3 types I, II and III, versions A and B, as well as their combinations. In addition, we propose approximations and relations between both derivatives, i.e., \( \psi \)-Hilfer FDVO and \( \psi \)-Caputo FDVO. With regard to the \( \psi \)-Hilfer FDVO type II, we discuss the stability of the FVO nonlinear systems 7 solutions by means of one-parameter Mittag-Leffler functions of variable order. Examples 8 involving the FDVO Lü and Chen systems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida R (2017a) Caputo–Hadamard fractional derivatives of variable order. Numer Funct Anal Opt 38(1):1–19

    MathSciNet  MATH  Google Scholar 

  • Almeida R (2017b) A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simul 44:460–481

    MathSciNet  MATH  Google Scholar 

  • Almeida R, Torres Delfim F, M, (2015) A discrete method to solve fractional optimal control problems. Nonlinear Dyn 80.4:1811–1816

  • Almeida R, Nuno RO, Bastos Teresa M, Monteiro T (2016) Modeling some real phenomena by fractional differential equations. Math Methods Appl Sci 39.16:4846–4855

    MathSciNet  MATH  Google Scholar 

  • Almeida R, Nuno RO, Bastos Teresa M, Monteiro T (2018) A fractional Malthusian growth model with variable order using an optimization approach. Stat Opt Inf Comput 6.1:4–11

    MathSciNet  Google Scholar 

  • Almeida R, Tavares D, Torres Delfim FM (2019) The variable-order fractional calculus of variations. Springer briefs in applied sciences and technology. Springer, Cham

    Google Scholar 

  • Atanackovic T, Janev M, Pilipovic S, Zorica D (2013) An expansion formula for fractional derivatives of variable order. Open Phys 11.10:1350–1360

    Google Scholar 

  • de Oliveira EC, Sousa JVC (2018) Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math 73(3):111

    MathSciNet  MATH  Google Scholar 

  • Debnath L (2004) A brief historical introduction to fractional calculus. Int J Math Educ Sci Technol 35(4):487–501

    MathSciNet  Google Scholar 

  • Hajipour M, Jajarmi A, Baleanu D, Sun H (2019) On an accurate discretization of a variable-order fractional reaction–diffusion equation. Commun Nonlinear Sci Numer Simul 69:119–133

    MathSciNet  MATH  Google Scholar 

  • Herzallah MAE, Baleanu D (2009) Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn 58(1–2):385

    MathSciNet  MATH  Google Scholar 

  • Karniadakis GE (2019) Handbook of fractional calculus with applications. Numerical methods, vol 3. De Gruyter, Berlin

    Google Scholar 

  • Leibniz GW (1849) Letter from Hanover, Germany, to GFA L’Hopital, September 30; 1695. Math Schr 2:301–302

    Google Scholar 

  • Leibniz GW (1962a) Letter from Hanover, Germany to Johann Bernoulli, December 28, 1695. Leibniz Mathematische Schriften. Olms-Verlag, Hildesheim, p 226

    Google Scholar 

  • Leibniz GW (1962b) Letter from Hanover, Germany to John Wallis, May 28, 1697. Leibniz Mathematische Schriften. Olms-Verlag, Hildesheim, p 25

    Google Scholar 

  • Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Chaos Solitons Fract 22(3):549–554

    MATH  Google Scholar 

  • Lu JG (2006) Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys Lett A 354(4):305–311

    Google Scholar 

  • Machado JA, Tenreiro V Kiryakova, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16.3:1140–1153

    MathSciNet  MATH  Google Scholar 

  • Nash JF, Rassias MT (2016) Open problems in mathematics. Springer, New York

    MATH  Google Scholar 

  • Odzijewicz T, Malinowska A, Torres D (2013) Noether’s theorem for fractional variational problems of variable order. Open Phys 11(6):691–701

    Google Scholar 

  • Oliveira DS, de Oliveira EC (2018) Hilfer–Katugampola fractional derivatives. Comput Appl Math 37.3:3672–3690

    MathSciNet  MATH  Google Scholar 

  • Polya G, Kilpatrick J (2013) The Stanford mathematics problem book: with hints and solutions. Courier Corporation, Chelmsford

    Google Scholar 

  • Pooseh S, Almeida R, Torres DFM (2012) Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative. Numer Funct Anal Opt 33(3):301–319

    MathSciNet  MATH  Google Scholar 

  • Pooseh S, Almeida R, Torres DFM (2013) Numerical approximations of fractional derivatives with applications. Asian J Control 15(3):698–712

    MathSciNet  MATH  Google Scholar 

  • Samko S (2013) Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn 71(4):653–662

    MathSciNet  MATH  Google Scholar 

  • Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Int Transf Spec Funct 1.4:277–300

    MathSciNet  MATH  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives, vol 1. Gordon and Breach Science Publishers, Yverdon-Les-Bains

    MATH  Google Scholar 

  • Sierociuk D, Malesza W, Macias M (2013) On a new definition of fractional variable-order derivative. In: Proceedings of the 14th international Carpathian control conference (ICCC). IEEE

  • Sierociuk D, Malesza W, Macias M (2015) Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl Math Model 39(13):3876–3888

    MathSciNet  MATH  Google Scholar 

  • Sierociuk D, Malesza W, Macias M (2016) On a new symmetric fractional variable order derivative. In: Domek S, Dworak P (eds) Theoretical developments and applications of non-integer order systems. Springer, Cham, Heidelberg, pp 29–40

  • Sousa JVC, de Oliveira EC (2018a) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2018b) Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl Math Lett 81:50–56

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2018c) Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput Appl Math 37(4):5375–5394

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2019a) Leibniz type rule: \(\psi \)-Hilfer fractional operator. Commun Nonlinear Sci Numer Simul 77:305–311

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2019b) On the \(\Psi \)-fractional integral and applications. Comput Appl Math 38.1:4

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC, Magna LA (2017) Fractional calculus and the ESR test. AIMS Math 2(4):692–705

    MATH  Google Scholar 

  • Sousa JVC, Santos MNN, Magna LA, de Oliveira EC (2018) Validation of a fractional model for erythrocyte sedimentation rate. Comput Appl Math 37.5:6903–6919

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, Kucche KD, de Oliveira EC (2019) Stability of \(\psi \)-Hilfer impulsive fractional differential equations. Appl Math Lett 88:73–80

    MathSciNet  MATH  Google Scholar 

  • Sun H, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A Stat Mech Appl 388(21):4586–4592

    Google Scholar 

  • Sun H, Chang A, Zhang Y, Chen W (2019) A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract Calc Appl Anal 22(1):27–59

    MathSciNet  MATH  Google Scholar 

  • Tavares D, Almeida R, Torres DFM (2015) Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order. Optimization 64(6):1381–1391

    MathSciNet  MATH  Google Scholar 

  • Tavares D, Almeida R, Torres DFM (2016) Caputo derivatives of fractional variable order: numerical approximations. Commun Nonlinear Sci Numer Simul 35:69–87

    MathSciNet  MATH  Google Scholar 

  • Tavares D, Almeida R, Torres DFM (2017) Constrained fractional variational problems of variable order. IEEE/CAA J Autom Sin 4(1):80–88

    MathSciNet  Google Scholar 

  • Tavares D, Almeida R, Torres DFM (2018) Combined fractional variational problems of variable order and some computational aspects. J Comput Appl Math 339:374–388

    MathSciNet  MATH  Google Scholar 

  • Tenreiro Machado JA, Kiryakova V (2019) Recent history of the fractional calculus: data and statistics. Handb Fract Calc Appl 1:1–21

    MathSciNet  Google Scholar 

  • Teodoro G, Sales JA, Machado Tenreiro, de Oliveira EC (2019) A review of definitions of fractional derivatives and other operators. J Comput Phys 388:195–208

    MathSciNet  Google Scholar 

  • Valério D, Da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Signal Process 91.3:470–483

    MATH  Google Scholar 

  • Valério D, da Costa JS (2013) Variable order fractional controllers. Asian J Control 15(3):648–657

    MathSciNet  MATH  Google Scholar 

  • Zhang S (2013) Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun Nonlinear Sci Numer Simul 18(12):3289–3297

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JVCS acknowledges the financial support of a PNPD-CAPES (process number no. 88882.305834/2018-01) scholarship of the Postgraduate Program in Applied Mathematics of IMECC-Unicamp. We are grateful to the anonymous referees for the suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

From Theorems 11 and 12, we now discuss the operator limitation \({\mathbf {I}}_{a+}^{\alpha \left( x,t\right) ;\psi }\left( \cdot \right) \) and a version of the integration by parts.

Theorem 11

Let \(\dfrac{1}{n}<\alpha (x,t)<1\), for all \((x,t)\in \left[ a,b\right] ^{2} \) with a number \(n\in {\mathbb {N}}\) greater or equal than two and an increasing function \(\psi \in C^{1}([a,b],{\mathbb {R}})\), for \(t\in [a,b]\). The \(\psi \)-Riemann–Liouville FIVO \(\alpha (x,t)\),

$$\begin{aligned} {\mathbf {I}}_{a^{+}}^{\alpha (x,t);\psi }:L_{1}(\left[ a,b\right] ,{\mathbb {R}})\longmapsto L_{1}(\left[ a,b\right] ,{\mathbb {R}}) \end{aligned}$$

is a linear and bounded operator.

Proof

First, note that the operator \({\mathbf {I}}_{a^{+}}^{\alpha (x,t);\psi }\left( \cdot \right) \) is linear. Let \(\dfrac{1}{n}<\alpha (x,t)<1\) and \(f\in L_{1}(\left[ a,b\right] ,{\mathbb {R}})\). We define the following function:

$$\begin{aligned} {\mathbf {H}}(x,t,s):=\left\{ \begin{array}{lcl} \left| \psi ^{\prime }\left( s\right) \left( \psi \left( s\right) -\psi \left( t\right) \right) ^{\alpha (x,t)-1}\right| \left| f(s)\right| , &{} \text { if} &{} s<t, \\ 0, &{} \text {if} &{} t\le s, \end{array} \right. \end{aligned}$$

\(\forall (x,t,s)\in \varOmega :=\left[ a,b\right] \times \left[ a,b\right] \times \left[ a,b\right] \).

By hypothesis, \(\dfrac{1}{n}< \alpha (x,t) < 1\), and in this sense, for \(s+1\le t\) we have \((\psi (t)-\psi (s))^{\alpha (x,t)-1}<1\). On the other hand, for \(s< t < s+1\), we have \((\psi (t)-\psi (s))^{\alpha (x,t)-1}<(\psi (t)-\psi (s))^{\frac{1}{n}-1}\).

Therefore, we can write

$$\begin{aligned}&\int _{a}^{b}\left( \int _{a}^{s}{\mathbf {H}}(x,s,t)\,\mathrm{d}t\right) \mathrm{d}s\\&\quad =\int _{a}^{b}\left( \int _{s}^{b}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\right| |f(t)|\right) \,\mathrm{d}s \\&\qquad \int _{a}^{b}|f(t)|\left( \int _{s}^{b}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\right| \,\mathrm{d}t\right) \,\mathrm{d}s \\&\quad =\int _{a}^{b}|f(t)|\left( \begin{array}{c} \displaystyle \int _{s}^{s+1}|\psi ^{\prime }(t)|\left| (\psi (t)-\psi (s))^{\alpha (x,t)-1}\right| \mathrm{d}t \\ +\displaystyle \int _{s+1}^{b}|\psi ^{\prime }(t)|\left| (\psi (t)-\psi (s))^{\alpha (x,t)-1}\right| \mathrm{d}t \end{array} \right) \mathrm{d}s \\&\quad \le \displaystyle \int _{a}^{b}|f(t)|\left( \displaystyle \int _{s}^{s+1}|\psi ^{\prime }(t)|\left| (\psi (t)-\psi (s))^{\frac{1}{n}-1}\right| \mathrm{d}t+\displaystyle \int _{s+1}^{b}|\psi ^{\prime }(t)|\mathrm{d}t\right) \mathrm{d}s \\&\quad =\int _{a}^{b}|f(t)|\left( \int _{s}^{s+1}|\psi ^{\prime }(t)|\left| (\psi (t)-\psi (s))^{\frac{1}{n}-1}\right| \mathrm{d}t+\psi (b)-\psi (s+1)\right) \mathrm{d}s \\&\quad \le \int _{a}^{b}|f(t)|\left\{ n(\psi (s+1)-\psi (s))^{\frac{1}{n}}+\psi (b)-\psi (s+1)\right\} \mathrm{d}s \\&\quad \le \psi (b)\left\| f\right\| \int _{a}^{b}\mathrm{d}s+n\left\| f\right\| \int _{a}^{b}(\psi (s+1)-\psi (s))^{\frac{1}{n}}\mathrm{d}s-\left\| f\right\| \int _{a}^{b}\psi (s+1)\,\mathrm{d}s \\&\quad \le \psi (b)\left\| f\right\| (b-a)+n\left\| f\right\| (b-a)-|\left\| f\right\| \psi (b+1)(b-a) \\&\quad =\left\| f\right\| (b-a)[\psi (b)-\psi (b+1)+n]<\infty . \end{aligned}$$

Remembering the inequality

$$\begin{aligned} \frac{x^{2}+1}{x+1}\le \varGamma (x+1)\le \frac{x^{2}+2}{x+2} \end{aligned}$$

and using the Fubini’s theorem, we have that h is integrable on \(\varOmega \) and

$$\begin{aligned} \left\| {\mathbf {I}}_{a^{+}}^{\alpha \left( x,t\right) ;\psi }\left( \cdot \right) \right\|= & {} \int _{a}^{b}\left| \frac{1}{\varGamma (\alpha \left( x,t\right) )} \int _{a}^{t}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha \left( x,t\right) -1}f(s)\,{d} s\right| \,\mathrm{d}t \\\le & {} \int _{a}^{b}\frac{1}{\varGamma (\alpha \left( x,t\right) )} \int _{a}^{t}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha \left( x,t\right) -1}f(s)\right| \,\mathrm{d}s\,\mathrm{d}t \\\le & {} \int _{a}^{b}\left( \frac{\alpha ^{2}(x,t)+\alpha \left( x,t\right) }{ \alpha ^{2}(x,t)+1}\int _{a}^{t}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha \left( x,t\right) -1}f(s)\right| \,\mathrm{d}s\right) \mathrm{d}t \\\le & {} \int _{a}^{b}\left( \int _{a}^{t}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha \left( x,t\right) -1}f(s)\right| \,\mathrm{d}s\right) \mathrm{d}t \\= & {} \int _{a}^{b}\left( \int _{a}^{t}{\mathbf {H}}(x,s,t)\,\mathrm{d}s\right) \,\mathrm{d}t\le (b-a)(\psi (b)-\psi (b+1)+n)\left\| f\right\| <\infty . \end{aligned}$$

Therefore, result

$$\begin{aligned} \left\| {\mathbf {I}}_{a+}^{\alpha \left( x,t\right) ;\psi }\left( \cdot \right) \right\| \le (b-a)(\psi (b)-\psi (b+1)+n)\left\| f\right\| \end{aligned}$$

completes the proof.

Theorem 12

Let \(\dfrac{1}{n}<\alpha (x,t)<1\), for all \((x,t)\in \left[ a,b\right] ^{2} \) with a number \(n\in {\mathbb {N}}\) greater or equal than two, \(f,g\in C([a,b],{\mathbb {R}})\) and \(\psi \in C^{1}([a,b],{\mathbb {R}})\) than two an the increasing functions such that \(\psi ^{\prime }(\cdot )\ne 0\), for all \(t\in [a,b]\). Then

$$\begin{aligned} \int _{a}^{b}g(t){\mathbf {I}}_{a+}^{\alpha (x,t);\psi }f(t)\,\mathrm{d}t=\int _{a}^{b}\psi ^{\prime }(t)f(t){\mathbf {I}}_{b-}^{\alpha (x,t);\psi }\left( \frac{g(t)}{\psi ^{\prime }(t)}\right) \,\mathrm{d}t . \end{aligned}$$

Proof

First, note that the operator \({\mathbf {I}}_{a+}^{\alpha (x,t);\psi }(\cdot )\) is linear. We define the following function

$$\begin{aligned} {\mathbf {H}}(x,t,s):=\left\{ \begin{array}{lcl} \left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}g(t)f(s)\right| , &{} if &{} s<t, \\ 0, &{} if &{} t\le s, \end{array} \right. \end{aligned}$$

\(\forall (x,t,s)\in \varOmega :=\left[ a,b\right] \times \left[ a,b\right] \times \left[ a,b\right] \).

As \(f,g\in C(\left[ a,b\right] ,{\mathbb {R}})\) and using the Bolzano’s theorem, f and g have maximum and minimum. Therefore, there are constants \(c_{1},c_{2}>0\), such that \(\left| g\left( t\right) \right| \le c_{1}\) and \(\left| f\left( t\right) \right| \le c_{2}\), with \(t\in \left[ a,b\right] \).

By hypothesis, \(\dfrac{1}{n}<\alpha (x,t)<1\), and, in this sense, for \(1\le t-s\), we have \((\psi (t)-\psi (s))^{\alpha (x,t)-1}<1\). On the other hand, for \( 1>t-s\), we have \(\left( \psi (t)-\psi (s)\right) ^{\alpha (x,t)-1}< \left( \psi (t)-\psi (s) \right) ^{\frac{1}{n}-1}\).

We can write

$$\begin{aligned}&\int _{a}^{b}\left( \int _{a}^{t}{\mathbf {H}}(x,s,t)\,\mathrm{d}s\right) \,\mathrm{d}t \\&\quad =\int _{a}^{b}\left( \int _{a}^{t}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}f(s)g(t)\right| \,\mathrm{d}s\right) \,\mathrm{d}t \\&\quad \le \int _{a}^{b}\int _{a}^{t}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\right| \,\left| g(t)\right| \left| f(s)\right| \,\mathrm{d}s\,{\mathrm{d}t} \\&\quad \le c_{1}c_{2}\int _{a}^{b}\int _{a}^{t}\left| \psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\right| \,\mathrm{d}s\,\mathrm{d}t \\&\quad =c_{1}c_{2}\int _{a}^{b}\int _{a}^{t}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\,\mathrm{d}s\,\mathrm{d}t \\&\quad =c_{1}c_{2}\int _{a}^{b}\left( \begin{array}{c} \displaystyle \int _{a}^{t-1}\,\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\,\mathrm{d}s \\ +\displaystyle \int _{t-1}^{t}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\,\mathrm{d}s \end{array} \right) \,\mathrm{d}t \\&\quad<c_{1}c_{2}\int _{a}^{b}\left( \int _{a}^{t-1}\psi ^{\prime }(t)\,\mathrm{d}s+\int _{t-1}^{t}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\frac{1}{n}-1}\,\mathrm{d}s\right) \,\mathrm{d}t \\&\quad =c_{1}c_{2}\int _{a}^{b}\left( \psi (t-1)-\psi (a)+n\left( \psi (t-1)-\psi (t)\right) ^{\frac{1}{n}}\right) \,\mathrm{d}t \\&\quad<c_{1}c_{2}\left( \psi (b-1)-\psi (a)+n\right) \int _{a}^{b}\,\mathrm{d}t \\&\quad =c_{1}c_{2}\left( \psi (b-1)-\psi (a)+n\right) (b-a)<\infty . \end{aligned}$$

On the other hand, knowing the inequality

$$\begin{aligned} \frac{x^{2}+1}{x+1}\le \varGamma (x+1)\le \frac{x^{2}+2}{x+2}, \end{aligned}$$

we can write

$$\begin{aligned}&\int _{a}^{b}g(t){\mathbf {I}}_{a+}^{\alpha (x,t);\psi }f(t)\,\mathrm{d}t\nonumber \\&\quad =\int _{a}^{b}\left( \frac{1}{\varGamma (\alpha (x,t))}\int _{a}^{t}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}g(t)f(s)\,\mathrm{d}s\right) \mathrm{d}t \end{aligned}$$

and using the Fubini’s theorem, we can obtain

$$\begin{aligned}&\int _{a}^{b}g(t){\mathbf {I}}_{a+}^{\alpha (x,t);\psi }f(t)\,\mathrm{d}t\\&\quad =\int _{a}^{b}\left( \frac{1}{\varGamma (\alpha (x,t))}\int _{s}^{b}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}g(t)f(s)\,\mathrm{d}t\right) \,\mathrm{d}s \\&\quad =\int _{a}^{b}\psi ^{\prime }(s)f(s)\left( \frac{1}{\varGamma (\alpha (x,t))} \int _{s}^{b}\psi ^{\prime }\left( s\right) \left( \psi \left( t\right) -\psi \left( s\right) \right) ^{\alpha (x,t)-1}\frac{g(t)}{\psi ^{\prime }(t)}\,{ d}t\right) \,\mathrm{d}s \\&\quad =\int _{a}^{b}\psi ^{\prime }(s)f(s){\mathbf {I}}_{b^{-}}^{\alpha (x,t);\psi }\left( \frac{g(s)}{\psi ^{\prime }(s)}\right) \,\mathrm{d}s\, \end{aligned}$$

which is the desired result.

Theorem 13

(Tavares et al. 2016, 2018; Pooseh et al. 2013; Odzijewicz et al. 2013; Tavares et al. 2017) Assuming the same conditions as Theorem 12 and choosing \(\psi \left( t\right) =t\), we have

$$\begin{aligned} \int _{a}^{b}g\left( t\right) {\mathbf {I}}_{a+}^{\alpha \left( x,t\right) }f\left( t\right) \mathrm{d}t=\int _{a}^{b}f\left( t\right) {\mathbf {I}}_{b-}^{\alpha \left( x,t\right) }g\left( t\right) \mathrm{d}t. \end{aligned}$$

Proof

The proof follows directly from Theorem (12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., Machado, J.A.T. & de Oliveira, E.C. The \(\psi \)-Hilfer fractional calculus of variable order and its applications. Comp. Appl. Math. 39, 296 (2020). https://doi.org/10.1007/s40314-020-01347-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01347-9

Keywords

Mathematics Subject Classification

Navigation