Skip to main content
Log in

Hypercrosslinked poly(AN-co-EGDMA-co-VBC): synthesis via suspension polymerization, characterizations, and potential to adsorb diclofenac and metformin from aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(acrylonitrile-co-ethylene glycol dimethacrylate-co-vinylbenzyl chloride) (poly(AN-co-EGDMA-co-VBC)) was synthesized by suspension polymerization and further hypercrosslinked by Friedel-Crafts reaction to serve as a sorbent to remove the pharmaceuticals. Energy dispersive X-ray analysis showed decreased chlorine content in the polymers, confirming a successful hypercrosslinking. BET analysis revealed that the hypercrosslinked (HXL) poly(AN-co-EGDMA-co-VBC) had a specific surface area up to 363 m2 g−1 with an average particle size of 77.2–174.1 μm. Hypercrosslinking of the polymer increased the specific surface area up to 42%, even at low VBC content (10%). Pore size distribution showed that the terpolymers were mesoporous. The maximum adsorption capacity of diclofenac (DCF) and metformin (MET) determined by the Langmuir isotherm model were up to 61.0 mg g−1 and 5.1 mg g−1, respectively and the adsorption kinetic followed pseudo-second-order rate equation. The equilibrium capacity of the sorbent decreased to approximately 78% for DCF and 72% for MET after four cycles of adsorption-desorption process, exhibiting good reusability property.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed from the current study are available from the corresponding author on reasonable request.

References

  1. Wilkinson J, Boxall A, Kolpin D (2019) A novel method to characterise levels of pharmaceutical pollution in large-scale aquatic monitoring campaigns. Appl Sci 9:1368

    CAS  Google Scholar 

  2. Phonsiri V, Choi S, Nguyen C, Tsai Y-L, Coss R, Kurwadkar S (2019) Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Appl Sci 1:798

    Google Scholar 

  3. Álvarez S, Ribeiro R, Gomes H, Sotelo J, García J (2015) Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem Eng Res Des 95:229–238

    Google Scholar 

  4. Fan L, Lu Y, Yang L-Y, Huang F, Ouyang X-K (2019) Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core–shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J Colloid Interface Sci 554:48–58

    CAS  PubMed  Google Scholar 

  5. Omar TFT, Aris AZ, Yusoff FM, Mustafa S (2018) Risk assessment of pharmaceutically active compounds (PhACs) in the Klang River estuary, Malaysia. Environ Geochem Health 41:211–223

    PubMed  Google Scholar 

  6. Praveena SM, Rashid MZM, Nasir FAM, Yee WS, Aris AZ (2019) Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotox Environ Safe 180:549–556

    CAS  Google Scholar 

  7. Nasir FAM, Praveena SM, Aris AZ (2019) Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk: a study from Kajang (Malaysia). Ecotoxicol Environ Saf 185:109681

    Google Scholar 

  8. Kalumpha M, Guyo U, Zinyama NP, Vakira FM, Nyamunda BC (2019) Adsorptive potential of Zea mays tassel activated carbon towards the removal of metformin hydrochloride from pharmaceutical effluent. Int J Phytoremediat 22:148–156

    Google Scholar 

  9. Zhu S, Liu Y-G, Liu S-B, Zeng G-M, Jiang L-H, Tan X-F, Zhou L, Zeng W, Li TT, Yang CP (2017) Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179:20–28

    PubMed  Google Scholar 

  10. Crago J, Bui C, Grewal S, Schlenk D (2016) Age-dependent effects in fathead minnows from the anti-diabetic drug metformin. Gen Comp Endocrinol 232:185–190

    CAS  PubMed  Google Scholar 

  11. Niemuth NJ, Klaper RD (2015) Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135:38–45

    CAS  PubMed  Google Scholar 

  12. Lee JW, Shin Y-J, Kim H, Kim H, Kim J, Min S-A, Kim P, Yu SD, Park K (2019) Metformin-induced endocrine disruption and oxidative stress of Oryzias latipes on two-generational condition. J Hazard Mater 367:171–181

    CAS  PubMed  Google Scholar 

  13. Jackson LM, Klerks PL (2019) Impact of long-term exposure to 17α-ethinylestradiol in the live-bearing fish Heterandria formosa. Arch Environ Contam Toxicol 77:51–61

    CAS  PubMed  Google Scholar 

  14. Soler P, Solé M, Bañón R, García-Galea E, Durfort M, Matamoros V, Bayona JM, Vinyoles D (2019) Effects of industrial pollution on the reproductive biology of Squalius laietanus (Actinopterygii, Cyprinidae) in a Mediterranean stream (NE Iberian Peninsula). Fish Physiol Biochem 46:247–264

    PubMed  Google Scholar 

  15. Behboudi A, Jafarzadeh Y, Yegani R (2017) Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. J Membr Sci 534:18–24

    CAS  Google Scholar 

  16. Zheng S, Li X, Zhang X, Wang W, Yuan S (2017) Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin. Chemosphere 182:325–331

    CAS  PubMed  Google Scholar 

  17. Moreira IS, Ribeiro AR, Afonso CM, Tiritan ME, Castro PM (2014) Enantioselective biodegradation of fluoxetine by the bacterial strain Labrys portucalensis F11. Chemosphere 111:103–111

    CAS  PubMed  Google Scholar 

  18. Zhou F, Man R, Huang J (2018) Alkoxy-modified hyper-cross-linked polymers with hierarchical porosity and their adsorption of salicylic acid from aqueous solution. Ind Eng Chem Res 57:12420–12428

    CAS  Google Scholar 

  19. Zhou T, Feng K, Xiang W, Lv Y, Wu X, Mao J, He C (2018) Rapid decomposition of diclofenac in a magnetic field enhanced zero-valent iron/EDTA Fenton-like system. Chemosphere 193:968–977

    CAS  PubMed  Google Scholar 

  20. Escobar CCD, Ruiz YPM, Santos JHZD, Ye L (2018) Molecularly imprinted TiO2 photocatalysts for degradation of diclofenac in water. Colloids Surf A Physicochem Eng Asp 538:729–738

    Google Scholar 

  21. Li Y, Taggart MA, Mckenzie C, Zhang Z, Lu Y, Pap S, Gibb S (2019) Utilizing low-cost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations. J Clean Prod 227:88–97

    CAS  Google Scholar 

  22. Tam NTM, Liu Y, Bashir H, Yin Z, He Y, Zhou X (2019) Efficient removal of diclofenac from aqueous solution by potassium ferrate-activated porous graphitic biochar: ambient condition influences and adsorption mechanism. Int J Environ Res Public Health 17:291

    Google Scholar 

  23. Huang X, Liu Y, Liu S, Li Z, Tan X, Ding Y, Zeng G, Xu Y, Zeng W, Zheng B (2016) Removal of metformin hydrochloride by Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Adv 6:79275–79284

    CAS  Google Scholar 

  24. Cherik D, Louhab K (2017) A kinetics, isotherms, and thermodynamic study of diclofenac adsorption using activated carbon prepared from olive stones. J Dispers Sci Technol 39:814–825

    Google Scholar 

  25. Patiño-Herrera R, Louvier-Hernández JF, Escamilla-Silva EM, Chaumel J, Escobedo AGP, Pérez E (2019) Prolonged release of metformin by SiO2 nanoparticles pellets for type II diabetes control. Eur J Pharm Sci 131:1–8

    PubMed  Google Scholar 

  26. Kyzas GZ, Nanaki SG, Koltsakidou A, Papageorgiou M, Kechagia M, Bikiaris DN, Lambropoulou DA (2015) Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media. Anal Chim Acta 866:27–40

    CAS  PubMed  Google Scholar 

  27. Ghiorghita C-A, Bucatariu F, Dragan ES (2016) Sorption/release of diclofenac sodium in/from free-standing poly(acrylic acid)/poly(ethyleneimine) multilayer films. J Appl Polym Sci 133:43752

    Google Scholar 

  28. Chauhan M, Saini VK, Suthar S (2020) Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J Clean Prod 258:120686

    CAS  Google Scholar 

  29. Lin K-YA, Yang H, Lee W-D (2015) Enhanced removal of diclofenac from water using a zeolitic imidazole framework functionalized with cetyltrimethylammonium bromide (CTAB). RSC Adv 5:81330–81340

    Google Scholar 

  30. Li Z, Li H, Wang D, Suwansoontorn A, Du G, Liu Z, Hasan MM, Nagao Y (2020) A simple and cost-effective synthesis of ionic poeous organic polymers with excellent porosity for high iodine capture. Polymer 204:122796

    CAS  Google Scholar 

  31. Li Z, Yao Y, Wang D, Hasan MM, Suwansoontorn A, Li H, Du G, Liu Z, Nagao Y (2020) Simple and universal synthesis of sulfonated porous organic polymers with high proton conductivity. Mater Chem Front 4:2339–2345

    CAS  Google Scholar 

  32. Tan L, Tan B (2017) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46:3322–3356

    CAS  PubMed  Google Scholar 

  33. Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer Networks. Chem Mater 19:2034–2048

    CAS  Google Scholar 

  34. Fu Z, Huang J (2017) Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: equilibrium, kinetics, and dynamic operation. Fluid Phase Equilib 438:1–9

    CAS  Google Scholar 

  35. Zhang T, Zhou F, Huang J, Man R (2018) Ethylene glycol dimethacrylate modified hyper-cross-linked resins: porogen effect on pore structure and adsorption performance. Chem Eng J 339:278–287

    CAS  Google Scholar 

  36. Zheng J, He X, Cai C, Xiao J, Liu Y, Chen Z, Pan B, Lin X (2020) Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly(divinylbenzene-co-ethyleneglycoldimethacrylate) resin. Chemosphere 239:124732

    CAS  PubMed  Google Scholar 

  37. Wang X, Zhang T, Huo J, Huang J, Liu Y-N (2017) Tunable porosity and polarity of polar post-cross-linked resins and selective adsorption. J Colloid Interface Sci 487:231–238

    CAS  PubMed  Google Scholar 

  38. Roslan NA, Abdullah N, Abidin SZ (2019) The synthesis of sulphonated hypercrosslinked exchange resin for free fatty acid esterification. C R Chim 22:761–770

    CAS  Google Scholar 

  39. Subri NNS, Cormack PAG, Jamil SNAM, Abdullah LC, Daik R (2018) Synthesis of poly(acrylonitrile-co-divinylbenzene-co-vinylbenzyl chloride)-derived hypercrosslinked polymer microspheres and a preliminary evaluation of their potential for the solid-phase capture of pharmaceuticals. J Appl Polym Sci 135:45677

    Google Scholar 

  40. Shaipulizan NS, Jamil SNAM, Kamaruzaman S, Subri NNS, Adeyi AA, Abdullah AH, Abdullah LC (2020) Preparation of ethylene glycol dimethacrylate (EGDMA)-based terpolymer as potential sorbents for pharmaceuticals adsorption. Polymers 12:423

    CAS  PubMed Central  Google Scholar 

  41. Jose J, John M, Mathew B (2003) Effect of the nature of crosslinking agent on the catalase-like activity of polystyrene-bound glycine–metal complexes. J Macromol Sci A 40:863–879

    Google Scholar 

  42. Galicia-Aguilar JA, Santamaría-Juárez JD, López-Badillo M, Sánchez-Cantú M, Varela-Caselis JL (2017) Synthesis and characterization of AN/EGDMA-based adsorbents for phenol adsorption. React Funct Polym 117:112–119

    CAS  Google Scholar 

  43. Abdullah N, Cormack PA (2015) Non-aqueous dispersion (NAD) polymerisation-based synthetic route to hypercrosslinked polymer: effect of reaction temperature and solvent system on specific surface area. Adv Mater Res 1134:198–202

    Google Scholar 

  44. Gokmen MT, Prez FED (2012) Porous polymer particles—a comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37:365–405

    CAS  Google Scholar 

  45. Sclavons M, Laurent M, Devaux J, Carlier V (2005) Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer 46:8062–8067

    CAS  Google Scholar 

  46. Braun D, Eidam N, Leiß D (1991) FTIR studies of polar interactions in polymer blends. Makromol Chem Macromol Symp 52:105–111

    CAS  Google Scholar 

  47. Zhang T, Huang J (2017) Tunable synthesis of the polar modified hyper-cross-linked resins and application to the adsorption. J Colloid Interface Sci 505:383–391

    CAS  PubMed  Google Scholar 

  48. Yuan HG, Kalfas G, Ray WH (1991) Suspension Polymerization. J Macromol Sci C Polym Rev J 31:215–299

    Google Scholar 

  49. Norhayati A, Zuhaili YM, Rabiatuladawiah M (2018) Synthesis and characterization of poly(HEMA-co-EGDMA-co-VBC) by modified suspension polymerization: effects of polymerization parameters reaction on chemical and thermal properties of polymer. Mater Today Proc 5:22010–22019

    CAS  Google Scholar 

  50. Yahya MZ, Abdullah N (2017) Preparation and characterization of hypercrosslinked poly (HEMA-co-EGDMA-co-VBC). Indian J Sci Technol 10:1–9

    CAS  Google Scholar 

  51. Liu Z, Chen G, Zhou F, Huang J (2019) Imidazolium salt incorporated poly(N-vinylimidazole-co-ethylene glycol dimethacrylate) for efficient adsorption of Congo Red and Hg2+ from Aqueous Solution. J Chem Eng Data 64:2627–2633

    CAS  Google Scholar 

  52. Guo M, Shao L, Du Y, Qian Z, Huang T, Tang D (2019) Microporous polymer based on the new compound “bi-(4-vinyl phenylquinoline) amide” for enrichment and quantitative determination of lamotrigine in rat and human serum. Anal Bioanal Chem 411:3353–3360

    CAS  PubMed  Google Scholar 

  53. Li W-H, Stöver HDH (2000) Monodisperse cross-linked core−shell polymer microspheres by precipitation polymerization. Macromolecules 33:4354–4360

    CAS  Google Scholar 

  54. Wang R, Zhang Y, Ma G, Su Z (2006) Preparation of uniform poly(glycidyl methacrylate) porous microspheres by membrane emulsification–polymerization technology. J Appl Polym Sci 102:5018–5027

    CAS  Google Scholar 

  55. Moral-Rodriguez AI, Leyva-Ramos R, Carrasco-Marín F, Bautista-Toledo MI, Pérez-Cadenas AF (2020) Adsorption of diclofenac from aqueous solution onto carbon xerogels: effect of synthesis conditions and presence of bacteria. Water Air Soil Pollut 231:17

    CAS  Google Scholar 

  56. Wang X, Ou H, Huang J (2019) One-pot synthesis of hyper-cross-linked polymers chemically modified with pyrrole, furan, and thiophene for phenol adsorption from aqueous solution. J Colloid Interface Sci 538:499–506

    CAS  PubMed  Google Scholar 

  57. Wang X, Mao X, Huang J (2018) Hierarchical porous hyper-cross-linked polymers modified with phenolic hydroxyl groups and their efficient adsorption of aniline from aqueous solution. Colloid Surf A Physicochem Eng Asp 558:80–87

    CAS  Google Scholar 

  58. Ravi S, Choi Y, Choe JK (2020) Novel phenyl-phosphate-based porous organic polymers for removal of pharmaceutical contaminants in water. Chem Eng J 379:122290

    CAS  Google Scholar 

  59. Marcos-Hernández Villagrán D (2019) Mesoporous composite nanomaterials for dye removal and other applications. Compos Nanoadsorbents 265–293

  60. Balasubramani K, Sivarajasekar N, Naushad M (2020) Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling. J Mol Liq 301:112426

    CAS  Google Scholar 

  61. Tran TV, Nguyen DTC, Le HT, Vo D-VN, Nanda S, Nguyen TD (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci 93:137–150

    Google Scholar 

  62. Adeyi AA, Jamil SNAM, Abdullah LC, TChoong TSY (2019) Hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic acid) adsorbent: preparation, characterization, and dye removal performance. Iran Polym J 28:483–491

    CAS  Google Scholar 

  63. Cusioli LF, Quesada HB, Castro ALDBP, Gomes RG, Bergamasco R (2020) Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water. Chemosphere 247:125852

    CAS  PubMed  Google Scholar 

  64. Zhu M, Lu L, Yang P, Jin X (2002) Bis(1,1-dimethylbiguanido)copper(II) octahydrate. Acta Crystallogr Sect E Struct Rep Online 58:m217–m219

    CAS  Google Scholar 

  65. Niu X, Zheng L, Zhou J, Dang Z, Li Z (2014) Synthesis of an adsorbent from sugarcane bagass by graft copolymerization and its utilization to remove Cd (II) ions from aqueous solution. J Taiwan Inst Chem Eng 45:2557–2564

    CAS  Google Scholar 

  66. Igberase E, Osifo P (2015) Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. J Ind Eng Chem 26:340–347

    CAS  Google Scholar 

  67. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M (2019) Adsorptive removal of methylene blue from aquatic environments using thiourea-modified poly(acrylonitrile-co-acrylic acid). Materials 12:1734

    CAS  PubMed Central  Google Scholar 

  68. Lu Y, Wang Z, Ouyang X-K, Ji C, Liu Y, Huang F, Yang L-Y (2020) Fabrication of cross-linked chitosan beads grafted by polyethylenimine for efficient adsorption of diclofenac sodium from water. Int J Biol Macromol 145:1180–1188

    CAS  PubMed  Google Scholar 

  69. Uzunova S, Uzunov I, Angelova D (2013) Liquid-phase sorption of oil by carbonized rice husks: impact of grain size distribution on the sorption kinetics. J Chem Technol Metall 48:505–512

    CAS  Google Scholar 

  70. Weber WJ (1984) Evolution of a technology. J Environ Eng 110:899–917

    CAS  Google Scholar 

  71. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY (2019) Adsorption of malachite green dye from liquid phase using hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic acid): kinetic and isotherm studies. J Chem 2019:1–14

    Google Scholar 

  72. Leshchinskaya A, Ezhova N, Pisarev O (2016) Synthesis and characterization of 2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate polymeric granules intended for selective removal of uric acid. React Funct Polym 102:101–109

    CAS  Google Scholar 

  73. Tomul F, Arslan Y, Başoğlu FT, Babuçcuoğlu Y, Tran HN (2019) Efficient removal of anti-inflammatory from solution by Fe-containing activated carbon: adsorption kinetics, isotherms, and thermodynamics. J Environ Manag 238:296–306

    CAS  Google Scholar 

  74. Orona-Návar C, García-Morales R, Rubio-Govea R, Mahlknecht J, Hernandez-Aranda RI, Ramírez JG, Nigam KDP, Ornelas-Soto N (2018) Adsorptive removal of emerging pollutants from groundwater by using modified titanate nanotubes. J Environ Chem Eng 6:5332–5340

    Google Scholar 

  75. Niaei HA, Rostamizadeh M (2020) Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: Isotherm, kinetic and thermodynamic studies. J Chem Thermodyn 142:106003

    Google Scholar 

  76. Hayasi M, Saadatjoo N (2017) Preparation of magnetic nanoparticles functionalized with poly (styrene-2-acrylamido-2-methyl propanesulfonic acid) as novel adsorbents for removal of pharmaceuticals from aqueous solutions. Adv Polym Technol 37:1941–1953

    Google Scholar 

  77. Cantarella M, Carroccio SC, Dattilo S, Avolio R, Castaldo R, Puglisi C, Privitera V (2019) Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem Eng J 367:180–188

    CAS  Google Scholar 

  78. Okoli CP, Ofomaja AE (2019) Development of sustainable magnetic polyurethane polymer nanocomposite for abatement of tetracycline antibiotics aqueous pollution: response surface methodology and adsorption dynamics. J Clean Prod 217:42–55

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Chemistry Department, Faculty of Science, Universiti Putra Malaysia, and Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia for providing the research facilities.

Funding

This research was funded by the Ministry of Higher Education, Malaysia (MOHE) under Fundamental Research Grant Scheme (FRGS); UPM/700-2/1/FRGS/03-01-16-1844FR & MOHE reference FRGS/1/2016/TK05/UPM/02/1, vote number 5524951.

Author information

Authors and Affiliations

Authors

Contributions

N.S.S. performed all the experimental and data analysis; S.N.A.M.J., N.N.S.S., N.O., and S.K. involved in data analysis; S.N.A.M.J., L.C.A., and T.S.Y.C. contributed reagents, materials, and analysis tools.

Corresponding author

Correspondence to Siti Nurul Ain Md Jamil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.01 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaipulizan, N.S., Jamil, S.N.A.M., Abdullah, L.C. et al. Hypercrosslinked poly(AN-co-EGDMA-co-VBC): synthesis via suspension polymerization, characterizations, and potential to adsorb diclofenac and metformin from aqueous solution. Colloid Polym Sci 298, 1649–1667 (2020). https://doi.org/10.1007/s00396-020-04757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04757-7

Keywords

Navigation