Skip to main content
Log in

Assessing the effective elastic properties of the tendon-to-bone insertion: a multiscale modeling approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The interphase joining tendon to bone plays the crucial role of integrating soft to hard tissues, by effectively transferring stresses across two tissues displaying a mismatch in mechanical properties of nearly two orders of magnitude. The outstanding mechanical properties of this interphase are attributed to its complex hierarchical structure, especially by means of competing gradients in mineral content and collagen fibers organization at different length scales. The goal of this study is to develop a multiscale model to describe how the tendon-to-bone insertion derives its overall mechanical behavior. To this end, the effective anisotropic stiffness tensor of the interphase is predicted by modeling its elastic response at different scales, spanning from the nanostructural to the mesostructural levels, using continuum micromechanics methods. The results obtained at a lower scale serve as inputs for the modeling at a higher scale. The obtained predictions are in good agreement with stochastic finite element simulations and experimental trends reported in literature. Such model has implication for the design of bioinspired bi-materials that display the functionally graded properties of the tendon-to-bone insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD, Wopenka B, Thomopoulos S (2012) The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface 9(73):1774–1786

    Article  Google Scholar 

  • Apostolakos J, Durant TJS, Dwyer CR, Russell RP, Weinreb JH, Alaee F, Beitzel K, McCarthy MB, Cote MP, Mazzocca AD (2014) The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J 4(3):333

    Article  Google Scholar 

  • Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR (2002) The skeletal attachment of tendons-tendon ‘entheses’. Comp Biochem Physiol A Mol Integr Physiol 133(4):931–945

    Article  Google Scholar 

  • Bernard S, Schneider J, Varga P, Laugier P, Raum K, Grimal Q (2016) Elasticity-density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomech Model Mech 15(1):97–109

    Article  Google Scholar 

  • Bochud N, Vallet Q, Minonzio J-G, Laugier P (2017) Predicting bone strength with ultrasonic guided waves. Sci Rep 7:43628

    Article  Google Scholar 

  • Bochud N, Laurent J, Bruno F, Royer D, Prada C (2018) Towards real-time assessment of anisotropic plate properties using elastic guided waves. J Acoust Soc Am 143(2):1138–1147

    Article  Google Scholar 

  • Brum J, Bernal M, Gennisson JL, Tanter M (2014) In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol 59(3):505

    Article  Google Scholar 

  • Buehler MJ (2007) Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18(29):295102

    Article  Google Scholar 

  • Buschmann J, Bürgisser GM (2017) Biomechanics of tendons and ligaments: tissue reconstruction and regeneration. Woodhead Publishing, Sawston

    Google Scholar 

  • Cai X, Follet H, Peralta L, Gardegaront M, Farlay D, Gauthier R, Yu B, Gineyts E, Olivier C, Langer M, Gourrier A, Mitton D, Peyrin F, Grimal Q, Laugier P (2019) Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomater 90:254–266

    Article  Google Scholar 

  • Deymier AC, An Y, Boyle JJ, Schwartz AG, Birman V, Genin GM, Thomopoulos S, Barber AH (2017) Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater 56:25–35

    Article  Google Scholar 

  • Deymier AC, Schwartz AG, Cai Z, Daulton TL, Pasteris JD, Genin GM, Thomopoulos S (2019) The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater 83:302–313

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241(1226):376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Felsenthal N, Zelzer E (2017) Mechanical regulation of musculoskeletal system development. Development 144(23):4271–4283

    Article  Google Scholar 

  • Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123

    Article  Google Scholar 

  • Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  MATH  Google Scholar 

  • Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260(2):230–252

    Article  MATH  Google Scholar 

  • Gagliardi D, Naili S, Desceliers C, Sansalone V (2017) Tissue mineral density measured at the sub-millimetre scale can provide reliable statistics of elastic properties of bone matrix. Biomech Model Mechan 16(6):1885–1910

    Article  Google Scholar 

  • Gagliardi D, Sansalone V, Desceliers C, Naili S (2018) Estimation of the effective bone-elasticity tensor based on \(\mu\)CT imaging by a stochastic model a multi-method validation. Eur J Mech A-Solid 69:147–167

    Article  MathSciNet  MATH  Google Scholar 

  • Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2012) Viscoelastic properties of model segments of collagen molecules. Matrix Biol 31(2):141–149

    Article  Google Scholar 

  • Genin GM, Thomopoulos S (2017) The tendon-to-bone attachment: unification through disarray. Nat Mater 16(6):607

    Article  Google Scholar 

  • Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97(4):976–985

    Article  Google Scholar 

  • Georgiadis M, Müller R, Schneider P (2016) Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 13(119):20160088

    Article  Google Scholar 

  • Hamed E, Jasiuk I (2012) Elastic modeling of bone at nanostructural level. Mater Sci Eng R Rep 73(3–4):27–49

    Article  Google Scholar 

  • Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mech 213(1–2):131–154

    Article  MATH  Google Scholar 

  • Hamed E, Jasiuk I, Yoo A, Lee Y, Liszka T (2012) Multi-scale modelling of elastic moduli of trabecular bone. J R Soc Interface 9(72):1654–1673

    Article  Google Scholar 

  • Hamed E, Novitskaya E, Li J, Chen P-Y, Jasiuk I, McKittrick J (2012) Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater 8(3):1080–1092

    Article  Google Scholar 

  • Hauch KN, Oyen ML, Odegard GM, Haut Donahue TL (2009) Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J Mech Behav Biomed Mater 2(4):339–347

    Article  Google Scholar 

  • Hellmich C, Barthélémy J-F, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure-a continuum micromechanics approach. Eur J Mech A Solids 23(5):783–810

    Article  MATH  Google Scholar 

  • Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  Google Scholar 

  • Hoffmeister BK, Handley SM, Wickline SA, Miller JG (1996) Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium. J Acoust Soc Am 100(6):3933–3940

    Article  Google Scholar 

  • Hu Y, Birman V, Deymier-Black A, Schwartz AG, Thomopoulos S, Genin GM (2015) Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone. Biophys J 108(2):431–437

    Article  Google Scholar 

  • Jung GS, Buehler MJ (2017) Multiscale modeling of muscular-skeletal systems. Annu Rev Biomed Eng 19:435–457

    Article  Google Scholar 

  • Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10(6):312–320

    Article  Google Scholar 

  • Katz JL, Ukraincik K (1971) On the anisotropic elastic properties of hydroxyapatite. J Biomech 4(3):221–227

    Article  Google Scholar 

  • Leicht S, Raum K (2008) Acoustic impedance changes in cartilage and subchondral bone due to primary arthrosis. Ultrasonics 48(6–7):613–620

    Article  Google Scholar 

  • Liu Y, Birman V, Chen C, Thomopoulos S, Genin GM (2011) Mechanisms of bimaterial attachment at the interface of tendon to bone. J Eng Mater Technol 133(1):011006

    Article  Google Scholar 

  • Liu Y, Thomopoulos S, Chen C, Birman V, Buehler MJ, Genin GM (2014) Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. J R Soc Interface 11(92):20130835

    Article  Google Scholar 

  • Lu HH, Thomopoulos S (2013) Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 15:201–226

    Article  Google Scholar 

  • McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLOS One 7(1):e29258

    Article  Google Scholar 

  • Mirzaali MJ, de la Nava AH, Gunashekar D, Nouri-Goushki M, Veeger RPE, Grossman Q, Angeloni L, Ghatkesar MK, Fratila-Apachitei LE, Ruffoni D, Doubrovski EL, Zadpoor AA (2020) Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing. Compos Struct, p 111867

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  • Nikolov S, Raabe D (2008) Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 94(11):4220–4232

    Article  Google Scholar 

  • Orgel J, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci 103(24):9001–9005

    Article  Google Scholar 

  • Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. Wiley Online Library, Hoboken

    Book  Google Scholar 

  • Qu D, Subramony SD, Boskey AL, Pleshko N, Doty SB, Lu HH (2017) Compositional mapping of the mature anterior cruciate ligament-to-bone insertion. J Orthop Res 35(11):2513–2523

    Article  Google Scholar 

  • Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R (2018) Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360(eaoo6388):21890

    Google Scholar 

  • Rosi G, Placidi L, Nguyen V-H, Naili S (2017) Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech Res Commun 84:43–48

    Article  Google Scholar 

  • Rossetti L, Kuntz LA, Kunold E, Schock J, Müller KW, Grabmayr H, Stolberg-Stolberg J, Pfeiffer F, Sieber SA, Burgkart R, Bausch AR (2017) The microstructure and micromechanics of the tendon-bone insertion. Nat Mater 16(6):664

    Article  Google Scholar 

  • Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33(3):270–282

    Article  Google Scholar 

  • Saadat F, Birman V, Thomopoulos S, Genin GM (2015) Effective elastic properties of a composite containing multiple types of anisotropic ellipsoidal inclusions, with application to the attachment of tendon to bone. J Mech Phys Solids 82:367–377

    Article  MathSciNet  Google Scholar 

  • Saadat F, Deymier AC, Birman V, Thomopoulos S, Genin GM (2016) The concentration of stress at the rotator cuff tendon-to-bone attachment site is conserved across species. J Mech Behav Biomed Mater 62:24–32

    Article  Google Scholar 

  • Sasaki N, Sudoh Y (1997) X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int 60(4):361–367

    Article  Google Scholar 

  • Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater 13(3):333–337

    Article  Google Scholar 

  • Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S (2013) Muscle loading is necessary for the formation of a functional tendon enthesis. Bone 55(1):44–51

    Article  Google Scholar 

  • Spalazzi JP, Boskey AL, Pleshko N, Lu HH (2013) Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One 8(9):e74349

    Article  Google Scholar 

  • Spiesz EM, Zysset PK (2015) Structure-mechanics relationships in mineralized tendons. J Mech Behav Biomed Mater 52:72–84

    Article  Google Scholar 

  • Suvorov AP, Dvorak GJ (2002) Rate form of the Eshelby and Hill tensors. Int J Solids Struct 39(21–22):5659–5678

    Article  MATH  Google Scholar 

  • Tellado SF, Balmayor ER, Van Griensven M (2015) Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv Drug Deliv Rev 94:126–140

    Article  Google Scholar 

  • Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21(3):413–419

    Article  Google Scholar 

  • Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM (2006) Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 39(10):1842–1851

    Article  Google Scholar 

  • Thorpe CT, Karunaseelan KJ, Hin J, Riley GP, Birch HL, Clegg PD, Screen HRC (2016) Distribution of proteins within different compartments of tendon varies according to tendon type. J Anat 229(3):450–458

    Article  Google Scholar 

  • Tiburtius S, Schrof S, Molnár F, Varga P, Peyrin F, Grimal Q, Raum K, Gerisch A (2014) On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 13(5):1003–1023

    Article  Google Scholar 

  • Von Euw S, Chan-Chang T-H-C, Paquis C, Haye G, Pehau-Arnaudet B, Babonneau F, Azaïs T, Nassif N (2018) Organization of bone mineral: the role of mineral-water interactions. Geosciences 8(12):466

    Article  Google Scholar 

  • Waggett AD, Ralphs JR, Kwan APL, Woodnutt D, Benjamin M (1998) Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol 16(8):457–470

    Article  Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206(2):262–266

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Article  Google Scholar 

  • Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S (2008) The tendon-to-bone transition of the rotator cuff: a preliminary raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. Appl Spectrosc 62(12):1285–1294

    Article  Google Scholar 

  • Yin HM, Sun LZ, Paulino Glaucio H (2004) Micromechanics-based elastic model for functionally graded materials with particle interactions. Acta Mater 52(12):3535–3543

    Article  Google Scholar 

  • Yoon YJ, Cowin SC (2008) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7(1):1–11

    Article  Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

  • Zlotnikov I, Zolotoyabko E, Fratzl P (2017) Nano-scale modulus mapping of biological composite materials: theory and practice. Prog Mater Sci 87:292–320

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the BEST-AMUS project (IIN program, CNRS-INSIS), the “Support for research for newly appointed Associate Professors” and the “Bonus Qualité Recherche” (Faculté des Sciences et Technologie, Université Paris-Est Créteil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bochud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Hill tensor \(\mathbb {P}^0\)

1.1 Appendix 1.1: Hill tensor for a cylindrical inclusion in a transversely isotropic medium

The nonzero components of the Hill tensor \(\mathbb {P}^0\) for a cylindrical inclusion embedded in a transversely isotropic matrix of stiffness \(\mathbb {C}^0\) are given according to Suvorov and Dvorak (2002) using Voigt notation, \(x_3\) being the axis of rotational symmetry,

$$\begin{aligned} P_{11}^0&=\frac{1}{8}\frac{(C^0_{22}+C^0_{66})+2C^0_{66}}{C^0_{22}C^0_{66}}\,, \end{aligned}$$
(10)
$$\begin{aligned} P_{22}^0&=\frac{1}{8}\frac{(C^0_{22}+3C^0_{66})}{C^0_{22}C^0_{66}}\,, \end{aligned}$$
(11)
$$\begin{aligned} P_{12}^0&=\frac{1}{8}\frac{C^0_{66}-C^0_{22}}{C^0_{22}C^0_{66}}\,, \end{aligned}$$
(12)
$$\begin{aligned} P_{66}^0&=\frac{1}{2}\frac{C^0_{22}+C^0_{66}}{C^0_{22}C^0_{66}}\,, \end{aligned}$$
(13)
$$\begin{aligned} P_{44}^0&=\dfrac{1}{2C^0_{44}}\,, \end{aligned}$$
(14)
$$\begin{aligned} P_{55}^0&=P_{44}^0\,. \end{aligned}$$
(15)

1.2 Appendix 1.2: Hill tensors for a spherical inclusion in an isotropic medium

Considering the case of a spherical inclusion embedded in an isotropic matrix of stiffness \(\mathbb {C}^0\) (Suvorov and Dvorak 2002), the components of the Hill tensor \(\mathbb {P}^0\) now read as

$$\begin{aligned} P_{11}^0&=\frac{7C^0_{44}+2C^0_{12}}{15C^0_{44}(C^0_{12}+2C^0_{44})}\,, \end{aligned}$$
(16)
$$\begin{aligned} P_{12}^0&=\frac{C^0_{44}+C^0_{12}}{-15C^0_{44}(C^0_{12}+2C^0_{44})}\,, \end{aligned}$$
(17)
$$\begin{aligned} P_{44}^0&=\frac{2(3C^0_{12}+8C^0_{44})}{15C^0_{44}(C^0_{12}+2C^0_{44})}\,, \end{aligned}$$
(18)
$$\begin{aligned} P_{22}^0&=P_{33}^0=P_{11}^0,\;\; P_{55}^0=P_{66}^0=P_{44}^0,\;\; P_{13}^0=P_{23}^0=P_{12}^0\,. \end{aligned}$$
(19)

Appendix 2: Effective stiffness tensor of the hydroxyapatite foam \(\mathbb {C}_{\text {Hw}}(x)\)

The self-consistent scheme for two interpenetrating (spherical) inclusion phases with a linear elastic and isotropic behavior can be solved according to Hellmich et al. (2004). In such a case, the nonlinear system of equations (3) can be substituted by a system of two nonlinear equations (note that the spatial variable x was omitted here for sake of clarity),

$$\begin{aligned} \dfrac{f_{\text {HA}}(K_{\text {HA}}-K_{\text {Hw}})}{1+\alpha _{\text {Hw}}(K_{\text {HA}}-K_{\text {Hw}})/K_{\text {Hw}}}+\dfrac{(1-f_{\text {HA})}(K_{\text {wp}}-K_{\text {Hw}})}{1+\alpha _{\text {Hw}}(K_{\text {wp}}-K_{\text {Hw}})/K_{\text {Hw}}}=0\,, \end{aligned}$$
(20)
$$\begin{aligned} \dfrac{f_{\text {HA}}(G_{\text {HA}}-G_{\text {Hw}})}{1+\beta _{\text {Hw}}(G_{\text {HA}}-G_{\text {Hw}})/G_{\text {Hw}}}+\dfrac{(1-f_{\text {HA})}(G_{\text {wp}}-G_{\text {Hw}})}{1+\beta _{\text {Hw}}(G_{\text {wp}}-G_{\text {Hw}})/G_{\text {Hw}}}=0\,, \end{aligned}$$
(21)

where the two unknowns \(K_{\text {Hw}}\) and \(G_{\text {Hw}}\) denote the bulk and shear moduli of the HA foam, respectively. The parameters \(\alpha _{\text {Hw}}\) and \(\beta _{\text {Hw}}\) are defined as

$$\begin{aligned} \alpha _{\text {Hw}}=\frac{3K_{\text {Hw}}}{3K_{\text {Hw}}+4G_{\text {Hw}}}\,, \;\; \beta _{\text {Hw}}=\frac{6(K_{\text {Hw}}+2G_{\text {Hw}})}{5(3K_{\text {Hw}}+4G_{\text {Hw}})}\,. \end{aligned}$$
(22)

Solving the aforementioned system yields the following components for the stiffness tensor of the hydroxyapatite foam,

$$\begin{aligned}&C^{\text {Hw}}_{11}=K_{\text {Hw}}+\dfrac{4}{3}G_{\text {Hw}}\,, \end{aligned}$$
(23)
$$\begin{aligned}&C^{\text {Hw}}_{12}=K_{\text {Hw}}-\dfrac{2}{3}G_{\text {Hw}}\,, \end{aligned}$$
(24)
$$\begin{aligned}&C^{\text {Hw}}_{44}=G_{\text {Hw}}\,, \end{aligned}$$
(25)
$$\begin{aligned}&C^{\text {Hw}}_{22}=C^{\text {Hw}}_{33}=C^{\text {Hw}}_{11}\,, \;\; C^{\text {Hw}}_{13}=C^{\text {Hw}}_{23}=C^{\text {Hw}}_{12},C^{\text {Hw}}_{55}=C^{\text {Hw}}_{66}=C^{\text {Hw}}_{44}\,. \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, A., Bochud, N., Rosi, G. et al. Assessing the effective elastic properties of the tendon-to-bone insertion: a multiscale modeling approach. Biomech Model Mechanobiol 20, 433–448 (2021). https://doi.org/10.1007/s10237-020-01392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01392-7

Keywords

Navigation