Skip to main content
Log in

Detrital Zircon U–Pb Geochronology as an Indicator of Provenance in the Zhiluo Formation of the Western Ordos Basin, China

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Detrital zircon grains were collected from six samples of sedimentary rock from the Middle Jurassic Zhiluo Formation in the western Ordos Basin of China. U–Pb isotopic geochronology data were measured and used to assess the provenance and directions of sediment transport of these grains. Five age populations were recognised amongst the U–Pb age spectra: 2700–2034 Ma, 1999–1426 Ma, 1296–636 Ma, 556–323 Ma, and 315–207 Ma. Each of these groups corresponds to one or several potential sediment sources around the western Ordos Basin. Based on these data and the spatial distribution of the six collected samples, we interpret that the material of the Middle Jurassic Zhiluo Formation in the western Ordos Basin was mainly derived from the northern margin of the North China Craton and the Qilian Orogenic Belt. In addition, the eastern margin of the Alxa Block contributed as a sediment source for certain regions. Detritus was transported via two major supply directions to the western Ordos Basin, and this basin was connected to the Hexi Corridor during the Middle Jurassic. In conclusion, our results are consistent with the closure of Palaeo-ocean and the formation of the orogenic belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dickinson, W.R.; et al.: Plate tectonics and sandstone composition. AAPG Bull. 63, 2164–2182 (1979)

    Google Scholar 

  2. Hidaka, H.; et al.: U-Pb geochrono1ogy and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: evidence for an Archean provenance. Chem. Geol. 187, 278–293 (2002)

    Article  Google Scholar 

  3. Yan, Y.; et al.: The indication of continental detrital sediment to tectonic setting. Adv Earth Sci 17, 85–90 (2002). (in Chinese with English abstract)

    Google Scholar 

  4. Cawood, P.A.; et al.: Source of the Dalradian Supergroup constrained by U-Pb dating of detrital zircon and implications for the East Laurentian margin. J Geol. Soc. Lond. 160, 231–246 (2003)

    Article  Google Scholar 

  5. Belousova, E.A.; et al.: Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Miner. Pet. 143, 602–622 (2002)

    Article  Google Scholar 

  6. Siebel, W.; et al.: Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat. Geosci. 2, 886–890 (2009)

    Article  Google Scholar 

  7. Lee, J.; et al.: Pb, U and Th diffusion in nature zircon. Nature 390, 159–162 (1997)

    Article  Google Scholar 

  8. Cherniak, D.J.; et al.: Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2000)

    Article  Google Scholar 

  9. Soreghan, M.J.; et al.: Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Geol. Soc. Am. Spec. Pap. 347, 252 (2001)

    Google Scholar 

  10. Wang, W.T.; et al.: Constraints on mountain building in the northeastern Tibet: detrital zircon records from synorogenic deposits in the Yumen Basin. Sci. Rep. 6, 27604 (2016)

    Article  Google Scholar 

  11. Xu, Y.; et al.: Detrital zircon record of continental collision assembly of the Qilian Orogen, China. Sediment Geol. 230, 35–45 (2010)

    Article  Google Scholar 

  12. Luo, W.; et al.: LA-ICP-MS U-Pb chronological characteristics of detrital zircon from Zhiluo Formation and its provenance in Shiganggou region, Western Ordos Basin. J. Miner. Pet. 35, 106–115 (2015). (in Chinese with English abstact)

    Google Scholar 

  13. Zhao, X.; et al.: Detrital zircon U-Pb ages of Middle Ordovician flysch sandstones in the western ordos margin New constraints on their provenances, and tectonic implications. Sediment Geol. 339, 32–45 (2016)

    Article  Google Scholar 

  14. Lu, S.N.; et al.: Precambrian Geology of the Central Orogenic Belt (Central-Western). Geological Publishing House, Beijing (2009). (in Chinese with English abstract)

    Google Scholar 

  15. Yang, H.; et al.: Evolution and natural gas enrichment of multicycle superimposed basin in Ordos. China Pet. Explor. 11, 17–24 (2006). (in Chinese with English abstract)

    Google Scholar 

  16. Liu, S.: The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China. J. Asian Earth Sci. 16, 369–383 (1998)

    Article  Google Scholar 

  17. Zhang, J.; et al.: The mechanism of the difference between the northern part and the southern part of the fold and thrust belt on the western edge of the Ordos Basin. China. Geotectonica Et Metallogenia. 24, 124–133 (2000). (in Chinese with English abstract)

    Google Scholar 

  18. Zhao, H.: Structural characteristics and the evolution in western Ordos Basin, pp. 1–133. Northwest University, Kirkland (2003). (in Chinese with English abstract)

    Google Scholar 

  19. Ouyang, Z.; et al.: Structural characters and evolution of the mid-south section at the west margin of Ordos Basin. Geoscience 26, 691–695 (2012). (in Chinese with English abstract)

    Google Scholar 

  20. Li, C.Y.; et al.: Tectonic Map of Asia (Scale 1:8,000,000), vol. 49. Cartographic Publishing House, Beijing (1982). (in Chinese)

    Google Scholar 

  21. Wan, Y.; et al.: SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res. 149, 249–271 (2006)

    Article  Google Scholar 

  22. Gong, J.H.; et al.: 2.5 Ga TTG gneiss and its geological implications in the western Alxa block, North China Craton. Chin. Sci. Bull. 57, 4064–4076 (2012)

    Article  Google Scholar 

  23. Zhao, G.; Cawood, P.A.: Precambrian geology of China. Precambrian Res. 222–223, 13–54 (2012)

    Article  Google Scholar 

  24. Dan, W.; et al.: Phanerozoic amalgamation of the Alxa Block and North China craton: evidence from Paleozoic granitoids, U-Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Res. 32, 105–121 (2016)

    Article  Google Scholar 

  25. Dan, W.; et al.: Integrated in situ zircon U-Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: juvenile crustal materials deposited in active or passive continental margin? Precambrian Res. 222–223, 143–158 (2012)

    Article  Google Scholar 

  26. Li, X.H.; et al.: Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni–Cu sulfide deposit: associated with the ~ 825 Ma South China mantle plume? Geochem. Geophys. Geosyst. 6, 1–16 (2005)

    Article  Google Scholar 

  27. Li, J.; et al.: Amalgamation of the North China Cratonwith Alxa Block in the late of early Paleozoic: evidence from sedimentary sequences in the Niushou Mountain, Ningxia Hui Autonomous Region, NW China. Geogr. Rev. 58, 208–214 (2012). (in Chinese with English abstract)

    Google Scholar 

  28. Geng, Y.; et al.: Early neoproterozoic granite events in Alxa area of Inner Mongolia and their geological significance: evidence from geochronology. Acta Pet. Miner. 29, 779–795 (2010). (in Chinese with English abstract)

    Google Scholar 

  29. Yuan, W.; et al.: The alashan terrane was not part of North China by the late devonian: evidence from detrital zircon U–Pb geochronology and Hf isotopes. Gondwana Res. 27, 1270–1282 (2015)

    Article  Google Scholar 

  30. Yang, H.; et al.: Generation of peraluminous granitic magma in a post-collisional setting: a case study from the eastern Qilian orogen, NE Tibetan Plateau. Gondwana Res. 36, 15–32 (2016)

    Article  Google Scholar 

  31. Yang, J.H.; et al.: From subduction to collision in the Northern Tibetan Plateau: evidence from the Early Silurian clastic rocks, Northwestern China. J. Geol. 120, 50–68 (2012)

    Article  Google Scholar 

  32. Song, S.G.; et al.: Tectonics of the North Qilian orogen, NW China. Gondwana Res. 23, 1378–1401 (2013)

    Article  Google Scholar 

  33. Chen, Y.X.; et al.: Melting of continental crust during subduction initiation: a case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochim. Cosmochim. Ac. 132, 311–336 (2014)

    Article  Google Scholar 

  34. Feng, Y.M.; et al.: Geotectonics and Orogeny of the Qilian Mountains. Geological Publish House, Beijing (1996)

    Google Scholar 

  35. Wan, Y.S.; et al.: Geochemical characteristics of the Maxianshan complex and Xinglongshan group in the eastern segment of the Qilian orogenic belt. J. Geol. Soc. China 43, 52–68 (2000)

    Google Scholar 

  36. Dong, G.; et al.: Pre-Cambria crystalline basement zircon SHRIMP U-Pb geochronology of Qilian Orogenic Belt and its geological significance. Chin. Sci. Bull. 52, 1572–1585 (2007). (in Chinese with English abstact)

    Article  Google Scholar 

  37. Tung, K.A.; et al.: SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chin. Sci. Bull. 52, 2687–2701 (2007)

    Article  Google Scholar 

  38. Xu, W.C.; et al.: U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications. Chin. Sci Bull. 52, 531–538 (2007)

    Article  Google Scholar 

  39. Xu, Z.Q.; et al.: Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahighpressure metamorphic belt. J. Asian Earth Sci. 28, 160–173 (2006)

    Article  Google Scholar 

  40. Zhao, G.; et al.: Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res. 177, 266–276 (2010)

    Article  Google Scholar 

  41. Dan, W.; et al.: Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: evidence from in situ zircon U-Pb dating and Hf–O isotopes. Gondwana Res. 21, 838–864 (2012)

    Article  Google Scholar 

  42. Zhao, J.F.; et al.: Distributional and sedimentary characteristics of sandstones in Jurassic Zhiluo Formation. Ordos Basin. Acta Sediment Sin. 25, 535–544 (2007). (in Chinese with English abstract)

    Google Scholar 

  43. Sun, L.W.; et al.: Jurassic sporopollen of Yan’an Formation and Zhiluo Formation in the northeastern Ordos Basin, Inner Mongolia, and its paleoclimatic significance. Earth Sci. Front. 24, 032–051 (2017)

    Google Scholar 

  44. Wiedenbeck, M.; et al.: Three natural zircon standards for U–Th–Pb, Lu–Hf, trace and REE analyses. Geostand. Newsl. 19, 1–23 (1995)

    Article  Google Scholar 

  45. Yuan, H.L.; et al.: Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS. Chem. Geol. 247, 100–118 (2007)

    Article  Google Scholar 

  46. Ludwig, K.R.: User’s manual for Isoplot 3.0: a geochronological toolkit for Microsoft excel. Berkeley Geochronol. Cent. Spec. Publ. Berkeley Calif. 4, 1–70 (2003)

    Google Scholar 

  47. Maas, R.; et al.: The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Ac. 56, 1281–1300 (1992)

    Article  Google Scholar 

  48. Wu, Y. B. et al.. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Sci Bull. 49, 1589-1604 (in Chinese) (2004).

  49. Lei, W.Y.; et al.: Research progress on trace element characteristics of zircons of different origins. Earth Sci. Front. 20, 273–284 (2013). (in Chinese with English abstract)

    Google Scholar 

  50. Möller, A.O.; et al.: Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). EMU Notes Mineral. 5, 65–82 (2003)

    Google Scholar 

  51. Schiøtte, L.; et al.: U-Th–Pb ages of single zircons in Archean supercrustals from Nain Province, Labrador. Can. J. Earth Sci. 26, 2636–2644 (1988)

    Article  Google Scholar 

  52. Kinny, P.D.; et al.: Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Aust. J. Earth Sci. 37, 51–69 (1990)

    Article  Google Scholar 

  53. Geng, Y.S.; et al.: Late neoarchean to early paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrol Sin. 26, 1945–1966 (2010). (in Chinese with English abstact)

    Google Scholar 

  54. Shen, Q.H.; et al.: New information from the surface outcrops and deep crust of archean rocks of the North China and Yangtze Blocks, and Qinling-Dabie Orogenic Belt. Acta Geol. Sin. 79, 616–627 (2005). (in Chinese with English abstract)

    Google Scholar 

  55. Zhao, G.C.; et al.: Amalgamation of the North China craton: key issues and discussion. Precambrian Res 222–223, 55–76 (2012)

    Article  Google Scholar 

  56. Zhang, C.L.; et al.: Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton constraints from zircon U–Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Res. 267, 121–136 (2015)

    Article  Google Scholar 

  57. Wang, Z.Z.; et al.: Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the Western North China Craton: evidence from LA-ICP-MS zircon U–Pb dating of the Langshan basement. Lithos 261, 278–295 (2016)

    Article  Google Scholar 

  58. Geng, Y.S.; et al.: Chronology of the precambrian metamorphic series in the Alxa area, inner Mongolia. Geol China. 34, 251–261 (2007). (in Chinese with English abstract)

    Google Scholar 

  59. Zhang, Y.; et al.: Fault kinematic analysis and change in late mesozoic tectonic stress regimes in the peripheral zones of the ordos basin, North China. Acta Geol. Sin. 80, 639–647 (2006)

    Google Scholar 

  60. Geng, Y.S.; et al.: Late-Paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area: evidence from geochronology. Acta Pet. Sin. 26, 1159–1170 (2010). (in Chinese with English abstact)

    Google Scholar 

  61. Wan, Y.S.; et al.: Episodic Paleoproterozoic (~ 2.45, ~ 1.95 and ~ 1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Res. 224, 71–93 (2013)

    Article  Google Scholar 

  62. Li, H.K.; et al.: SHRIMP U-Pb geochronological research on detrital zircons from the Beidahe Complex-Group in the western segment of the North Qilian mountains, Northwest China. Geol. Rev. 53, 132–140 (2007). (in Chinese with English abstract)

    Google Scholar 

  63. Geng, Y.S.; et al.: The discovery of Neoproterozoic Jinningian deformed granites in Alax area and its significance. Acta Pet. Miner 21, 412–420 (2002). (in Chinese with English abstract)

    Google Scholar 

  64. Dan, W.; et al.: Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications: in situ zircon U–Pb–Hf–O isotopic and geochemical constraints. Am. J. Sci. 314, 110–153 (2014)

    Article  Google Scholar 

  65. Guo, J.J.; et al.: Jinningian collisional granite belt in the eastern sector of the Central Qilian Massif and its implication. Acta Geosci. Sin. 20, 10–15 (1999). (in Chinese with English abstract)

    Google Scholar 

  66. Yan, Z.; et al.: Hualong complex, South Qilian terrane: U–Pb and Lu–Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin. Precambrian Res. 266, 65–85 (2015)

    Article  Google Scholar 

  67. Pei, X.Z.; et al.: Zircons LA-ICP-MS U-Pb dating of neoproterozoic granitoid gneisses in the North Margin of West Qinling and geological. Acta Geol. Sin. 81, 772–786 (2007). (in Chinese with English abstract)

    Google Scholar 

  68. Wang, Z.Z.; et al.: Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia. China. J Asian Earth Sci. 97(1), 337–351 (2015)

    Article  Google Scholar 

  69. Tseng, C.Y.; et al.: Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China: evidence from newly discovered Paleozoic adakitic rocks. Gondwana Res. 16, 285–293 (2009)

    Article  Google Scholar 

  70. Yan, Z.; et al.: Silurian clastic sediments in the North Qilian Shan, NW China: chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau. Sediment Geol. 231, 98–114 (2010)

    Article  Google Scholar 

  71. Li, J.Y.: Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 26, 207–224 (2006)

    Article  Google Scholar 

  72. Shi, X.J.; et al.: Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro–granodiorite–granite intrusions in the Shalazhashan of northern Alxa: constraints on the southernmost boundary of the Central Asian Orogenic Belt. Lithos 208–209, 158–177 (2014)

    Article  Google Scholar 

  73. Luo, H.L.; et al.: Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia: evidence for the Early Permian underplating beneath the North China Craton. Acta Pet. Sin. 23, 755–766 (2007). (in Chinese with English abstract)

    Google Scholar 

  74. Luo, H.L.; et al.: Zircon SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China plate and tectonic significance. Acta Pet. Sin. 25, 515–526 (2009). (in Chinese with English abstract)

    Google Scholar 

  75. Zhang, X.H.; et al.: Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the Early Permian Guyang batholith from the northern North China Craton. Lithos 125, 569–591 (2011)

    Article  Google Scholar 

  76. Zhao, J.F.; et al.: The transfer of depocenters and accumulation centers of ordos basin in Mesozoic and its meaning. Acta Geol. Sin. 82, 540–552 (2008). (in Chinese with English abstract)

    Google Scholar 

  77. China Geological Survey. 1:2500000 Geological map of the People’s Republic of China (in Chinese) (2002).

  78. Zhang, J.J.; et al.: Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: constraints on the southern boundary of the Central Asian Orogenic Belt. J. Asian Earth Sci. 108, 150–169 (2015)

    Article  Google Scholar 

  79. Zhang, B.H.; et al.: Tectonic affinity of the Alxa Block, Northwest China: constrained by detrital zircon U–Pb ages from the early Paleozoic strata on its southern and eastern margins. Sediment Geol. 339, 289–303 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant No. 41330315) and Special Items of China Geological Survey (Grant Nos. 12120113039900 and 12120114009201).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and Z.S. had the idea for the study, with W.L. primarily responsible for the written text. X.Z. contributed to acquisition of U–Pb data.

Corresponding author

Correspondence to Chiyang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 403 kb)

Supplementary material 2 (XLS 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Shi, Z., Liu, C. et al. Detrital Zircon U–Pb Geochronology as an Indicator of Provenance in the Zhiluo Formation of the Western Ordos Basin, China. Arab J Sci Eng 46, 587–600 (2021). https://doi.org/10.1007/s13369-020-04993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04993-7

Keywords

Navigation