Skip to main content
Log in

Amelioration of Soil Expansion Using Sodium Chloride with Long-Term Monitoring of Microstructural and Mineralogical Alterations

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The impact of chemical additives on the engineering properties of expansive soils has been studied in the past few years; however, the swelling properties as well as mineralogical and microstructural characteristics of expansive clay soils stabilized with NaCl solutions have not been clearly studied. This research work aims at investigating the expansion behavior of the studied clay soil before and after the treatment with a NaCl solution. It also aims to interpret the change in the soil geotechnical properties by monitoring the mineralogical and microstructural alterations. The treatment was performed with different NaCl doses (2.5–12.5%) for different curing times using various water amounts. The mineralogical and microstructural composition of NaCl-stabilized soil samples were analyzed by means of x-ray diffraction analysis, thermal analysis, and scanning electron microscopy. The test results indicated that the NaCl solution reduced the soil swelling in the short term significantly. The amount of water used in NaCl treatment considerably affected its performance. The mineralogical alteration of disappearance of the montmorillonite mineral from the composition of the NaCl-stabilized soil sample interpreted the reduction in the soil swelling in the short term. The 90 days, 12.5% NaCl-stabilized soil sample had densely packed cement block-like microstructure. This resulted from the binding of the soil clay aggregates by the newly formed cementitious products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, L.; Yin, Z.; Zhang, P.: Relationship of resistivity with water content and fissures of unsaturated expansive soils. J. China Univ. Min. Technol. 17(4), 537–540 (2007)

    Google Scholar 

  2. Assadi, A.; Shahabodin, S.: A micro-mechanical approach to swelling behavior of unsaturated expansive clays under controlled drainage conditions. Appl. Clay Sci. 45(1–2), 8–19 (2009)

    Google Scholar 

  3. Avsar, E.; Ulusay, R.; Sonmez, H.: Assessment of swelling anisotropy of Ankara clay. Eng. Geol. 105(1–2), 24–31 (2009)

    Google Scholar 

  4. Williams, H.F.L.: Urbanization pressure increases potential for soils related hazards Denton County. Texas. Environ. Geol. 44(8), 933–938 (2003)

    Google Scholar 

  5. Pedarla, A.: SWCC and clay mineralogy-based models for realistic simulation of swell behavior of expansive soils (Doctoral dissertation, The University of Texas, Arlington, USA), ProQuest LLC (2013)

  6. Norman, B.L.A.: Comprehensive investigation on microscale properties and macroscopic behavior of natural expansive soils (Doctoral dissertation, University of Oklahoma, USA), ProQuest LLC (2012)

  7. Basma, A.A.; Al-Hamoud, A.S.; Husein, A.: Laboratory assessment of swelling pressure of expansive soils. Appl. Clay Sci. 9, 355–365 (1995)

    Google Scholar 

  8. Abdullah, W.S.; Alshibli, K.A.; Al-Zou’bi, M.S.: Influence of pore water chemistry on the swelling behavior of compacted clays. Appl. Clay Sci. 15, 447–462 (1999)

    Google Scholar 

  9. Al-Rawas, A.A.; Taha, R.; Nelson, J.D.; Al-Shap, T.B.; Al-Siyabi, H.: A comparative evaluation of various additives used in the stabilization of expansive soils. Geol. Test. J. 25(2), 199–209 (2002)

    Google Scholar 

  10. Shi, H.; Jianh, Z.; Liu, H.; Fang, Y.: Engineering geological characteristics of expansive soils in China. Eng. Geol. 67, 63–71 (2002)

    Google Scholar 

  11. Turkoz, M.; Savas, H.; Acaz, A.; Tosun, H.: The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics. Appl. Clay Sci. 101, 1–9 (2014)

    Google Scholar 

  12. Mitchell, J.K.: Fundamentals of Soil Behavior. Wiley, New York (1976)

    Google Scholar 

  13. Snethen, D.R.; Johnson, L.D.; Patrick, D.M.: An evaluation of expedient methodology for identification of potentially expansive soils. Report No. FHWA-RD-77-94, U.S. Army Engineer Waterways Experiment Station, USAEWES, Vicksburg, Miss (1977)

  14. Nelson, J.D.; Miller, D.J.: Expansive Soils: Problems and Practice in Foundation and Pavement Engineering. Wiley, New York (1992)

    Google Scholar 

  15. Holtz, W.G.; Gibbs, H.J.: Engineering properties of expansive clays. Trans. Am. Soc. Civ. Eng. 121, 641–663 (1956)

    Google Scholar 

  16. Grim, R.E.: Clay Mineralogy. McGraw-Hill Book Company, Inc, New York (1953)

    Google Scholar 

  17. Erguler, Z.A.; Ulusal, R.: A simple test and predictive models for assessing swell potential of Ankara (Turkey) clay. Eng. Geol. 67, 331–352 (1993)

    Google Scholar 

  18. Guidobaldi, G.; Cambi, C.; Cecconi, M.; Comodi, P.; Deneele, D.; Paris, M.; Russo, G.; Vitale, E.; Zucchini, A.: Chemo-mineralogical evolution and microstructural modifications of a lime treated pyroclastic soil. Eng. Geol. 245, 333–343 (2018)

    Google Scholar 

  19. Aldaood, A.; Bouasker, M.; Al-Mukhtar, M.: Impact of wetting–drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils. Eng. Geol. 174, 11–21 (2014)

    Google Scholar 

  20. Basha, E.A.; Hashim, R.; Mahmud, H.B.; Muntohar, A.S.: Stabilization of residual soil with rice husk ash and cement. Const. Build. Mat. 19(6), 448–453 (2005)

    Google Scholar 

  21. Billong, N.; Melo, U.C.; Louvet, F.; Njopwouo, D.: Properties of compressed lateritic soil stabilized with a burnt clay–lime binder: effect of mixture components. Const. Build. Mat. 23(6), 2457–2460 (2009)

    Google Scholar 

  22. Wang, Y.; Cui, Y.-J.; Tang, A.M.; Tang, C.-S.; Benahmed, N.: Changes in thermal conductivity, suction and microstructure of a compacted lime-treated silty soil during curing. Eng. Geol. 202, 114–121 (2016)

    Google Scholar 

  23. Celik, E.; Nalbantoglu, Z.: Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng. Geol. 163, 20–25 (2013)

    Google Scholar 

  24. Jha, A.K.; Sivapullaiah, P.V.: Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Eng. Geol. 198, 53–64 (2015)

    Google Scholar 

  25. Latifi, N.; Eisazadeh, A.; Marto, A.: Strength behavior and microstructural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer. Environ. Earth Sci. 72(1), 91–98 (2014)

    Google Scholar 

  26. Latifi, N.; Rashid, A.S.A.; Siddiqua, S.; Horpibulsuk, S.: Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution—A green soil stabilizer. Appl. Clay Sci. 118, 195–206 (2015)

    Google Scholar 

  27. Marto, A.; Latifi, N.; Eisazadeh, A.: Effect of non-traditional additives on engineering and microstructural characteristics of laterite soil. Arab. J. Sci. Eng. 39(10), 6949–6958 (2014)

    Google Scholar 

  28. Al-Rawas, A.A.; Hago, A.W.; Al-Sarmi, H.: Effect of lime, cement and sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Build. Env. 40(5), 681–687 (2005)

    Google Scholar 

  29. Bell, F.G.: Lime stabilization of clay minerals and soils. Eng. Geol. 42(4), 223–237 (1996)

    Google Scholar 

  30. Biggs, A.J.W.; Mahony, K.M.: Is soil science relevant to road infrastructure? In: 13th international soil conservation organization conference (ISCO)—Brisbane, Paper No 410 (2004)

  31. Yilmaz, I.; Civelekoglu, B.: Gypsum: an additive for stabilization of swelling clay soils. App. Clay Sci. 44(1), 166–172 (2009)

    Google Scholar 

  32. Eisazadeh, A.; Kassim, K.A.; Nur, H.: Stabilization of tropical kaolin soil with phosphoric acid and lime. Nat. Haz. 61(3), 931–942 (2012)

    Google Scholar 

  33. Eisazadeh, A.; Kassim, K.A.; Nur, H.: Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays. Appl. Clay Sci. 67, 5–10 (2012)

    Google Scholar 

  34. Horpibulsuk, S.; Rachan, R.; Raksachon, Y.: Role of fly ash on strength and microstructure development in blended cement stabilized silty clay. Soils Found. 49(1), 85–98 (2009)

    Google Scholar 

  35. Olugbenga Oludolapo, A.M.U.; Ogunjobi, O.A.; Okhuemoi, A.I.: Effects of forage ash on some geotechnical properties of lime stabilized lateritic soils for road works. Int. J. Eng. Technol. 2(4) (2012)

  36. Rahmat, M.N.; Ismail, N.: Sustainable stabilisation of the lower oxford clay by nontraditional binder. Appl. Clay Sci. 52(3), 199–208 (2011)

    Google Scholar 

  37. Solanki, P.; Zaman, M.: Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers. Scanning Electron Microscopy, pp. 771–798. Intech, Rijeka (2012)

    Google Scholar 

  38. Turkoz, M.; Vural, P.: The effects of cement and natural zeolite additives on problematic clay soils. Sci. Eng. Comput. Mat. 20(4), 395–405 (2013)

    Google Scholar 

  39. Horpibulsuk, S.; Suksiripattanapong, C.; Samingthong, W.; Rachan, R.; Arulrajah, A.: Durability against wetting-drying cycles of water treatment sludge-fly ash geopolymer. J. Mat. Civ. Eng. ASCE 28(1), 04015078 (2015)

    Google Scholar 

  40. Latifi, N.; Marto, A.; Eisazadeh, A.: Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive. Acta Geot. 11(2), 1–11 (2015). https://doi.org/10.1007/s11440-015-0370-3

    Article  Google Scholar 

  41. Latifi, N.; Marto, A.; Eisazadeh, A.: Analysis of strength development in nontraditional liquid additive-stabilized laterite soil from macro-and micro-structural considerations. Environ. Earth Sci. 73(3), 1133–1141 (2015)

    Google Scholar 

  42. Sukmak, P.; Horpibulsuk, S.; Shen, S.L.; Chindaprasirt, P.; Suksiripattanpong, C.: Factors influencing strength development in clay-fly ash geopolymer. Const. Build. Mat. 47, 1125–1136 (2013)

    Google Scholar 

  43. Sukmak, P.; Silva, P.D.; Horpibulsuk, S.; Chindaprasirt, P.: Sulfate resistance of clay- Portland cement and clay-high calcium fly ash geopolymer. J. Mat. Civil. Eng. ASCE 27(5), 1–11 (2015)

    Google Scholar 

  44. Suksiripattanapong, C.; Horpibulsuk, S.; Chanprasert, P.; Sukmak, P.; Arulrajah, A.: Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Const. Build. Mat. 82, 20–30 (2015)

    Google Scholar 

  45. Tingle, J.S.; Newman, J.K.; Larson, S.T.; Weiss, C.A.; Rushing, J.F.: Stabilization mechanisms of nontraditional additives. Trans. Res. Rec: J. Trans. Res. Board, No. 1989(2). Transportation Research Board of the National Academies, Washington, D.C., pp. 59–67 (1989)

  46. Ureña, C.; Azañón, J.M.; Corpas, F.; Nieto, F.; León, C.; Pérez, L.: Magnesium hydroxide, seawater and olive mill wastewater to reduce swelling potential and plasticity of bentonite soil. Const. Build. Mat. 45, 289–297 (2013)

    Google Scholar 

  47. Guney, Y.; Sari, D.; Cetin, M.; Tuncan, M.: Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil. Build. Environ. 42, 681–688 (2007)

    Google Scholar 

  48. Raymond, N.Y.; Ouhadi, V.R.: Experimental study on instability of bases on natural and lime/cement stabilized clayey soils. Appl. Clay Sci. 35(3–4), 238–249 (2006)

    Google Scholar 

  49. Seco, A.; Ramirez, F.; Miqueleiz, L.; Garcia, B.; Prieto, E.: The use of non-conventional additives in Marls stabilization. Appl. Clay Sci. 51, 419–423 (2011)

    Google Scholar 

  50. Attom, M.F.: Shear strength characteristics of Irbid clayey soil mixed with iron filling and iron filling-cement mixture. Environ. Geol. 55(4), 781–788 (2007)

    Google Scholar 

  51. Eren, S.; Filiz, M.: Comparing the conventional soil stabilization methods to the consolid system used as an alternative admixture matter in Isparta Daridete material. Const. Build. Mat. 23, 2473–2480 (2009)

    Google Scholar 

  52. Seco, A.; Ramirez, F.; Miqueleiz, L.; Garcia, B.: Stabilization of expansive soils for use in construction. Appl. Clay Sci. 51, 348–352 (2011)

    Google Scholar 

  53. Rauch, A.F.; Harmon, J.S.; Katz, L.E.; Liljestrand, H.M.: Measured effects of liquid soil stabilizers on engineering properties of clay. J. Transp. Res. Board 1787(1), 33–41 (2002)

    Google Scholar 

  54. Scholen, D.E.: Non-standard stabilizers. Report FHWA-FLP-92-011FHWA, U.S. Department of Transportation (1992)

  55. Moore, J.C.: Effect of sodium chloride treatment on the engineering properties of compacted earth materials (Doctoral dissertation, University of Illinois, Urbana-Champai, Illinois, USA), ProQuest LLC (1973)

  56. Singh, G.; Ali, M.M.: Comparative study of effectiveness of sodium chloride in soil stabilization for pavement construction. High. Res. Bull. 7, 1–13 (1978)

    Google Scholar 

  57. Lees, G.; Abdelkader, M.O.; Hamdani, S.K.: Sodium chloride as an additive in lime soil stabilisation. High. Eng. 29(12), 2–8 (1982)

    Google Scholar 

  58. El-Sekelly, A.M.: Characterization of sodium chloride stabilised soils and soil aggregate mixtures for low-volume roads in Egypt (Doctoral dissertation, University of Leeds, England) (1987)

  59. Osula, D.: Laboratory trial of soil–sodium chloride–cement stabilization for problem laterite. J. Trans. Eng. 119(1), 149–158 (1993)

    Google Scholar 

  60. Petrukhin, V.P.: Construction of Structure on Saline Soils. Taylor and Francis, Hardcover (1993)

    Google Scholar 

  61. Singh, G.; Das, B.M.: Soil stabilization with sodium chloride. Trans. Res. Rec. 1673, 46–55 (1999)

    Google Scholar 

  62. Wu, C.; Zhou, B.; Li, Z.J.: Test of chlorides mixed with CaO, MgO, and sodium silicate for dust control and soil stabilization. J. Mat. Civ Eng. 19(1), 10–13 (2007)

    Google Scholar 

  63. Davoudi, M.H.; Kabir, E.: Interaction of lime and sodium chloride in low plasticity fine grain soils. J. Appl. Sci. 11(2), 330–335 (2011)

    Google Scholar 

  64. Saldanha, R.B.; Filho, H.C.S.; Ribeiro, J.L.D.; Consoli, N.C.: Modelling the influence of density, curing time, amounts of lime and sodium chloride on the durability of compacted geopolymers monolithic walls. Const. Build. Mat. 136, 65–72 (2017)

    Google Scholar 

  65. Ogawa, T.; Funada, S.; Nakamura, T.; Hashimoto, S.; Masui, N.: Studies on the Limitation of soil stabilization by addition of sodium chloride. Bull. Soc. Salt Sci. Japan 11(8), 767–834 (1963)

    Google Scholar 

  66. Hilmy, A.K.; El-Gabaly, M.M.: Exchange reactions between sodium salts and calcium saturated soils. Alex. J. Agric. Res. Egypt 1673(1), 46–54 (1954)

    Google Scholar 

  67. Abood, T.T.; Kasa, A.; Chik, Z.: Stabilisation of silty clay using chloride compounds. J. Eng. Sci. Technol. 2(1), 102–110 (2007)

    Google Scholar 

  68. Koslanant, S.; Onitsuka, K.; Negami, T.: Influence of salt additive in lime stabilization on organic clay. Geotech. Eng. 39, 95–101 (2006)

    Google Scholar 

  69. Yunus, N.Z.M.; Wanatowski, D.; Stace, L.R.: Effectiveness of chloride salts on the behaviour of lime-stabilised organic clay. Int. J. Geom. 3(2), 407–412 (2012)

    Google Scholar 

  70. Dakshanamurthy, V.; Raman, V.: A simple method of identifying an expansive soil. Soils Found. 13, 97–104 (1973)

    Google Scholar 

  71. Van der Merwe, D.H.: The prediction of heave from the plasticity index and percentage clay fraction of soils. Trans. South Afr. Inst. Civ. Eng. 6, 103–107 (1964)

    Google Scholar 

  72. Carver, R.E.: Procedures in Sedimentary Petrology. Wiley, New York (1971)

    Google Scholar 

  73. ASTM: Standard test methods for laboratory determination of liquid limit, plastic limit and plasticity index of soil. ASTM D 4318, Annual Book of ASTM Standard, V. 04008, Philadelphia (1994)

  74. TxDOT: Online Manuals ftp://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/100-E_series/pdfs/soi124.pdf (1999)

  75. ASTM: Standard test methods for laboratory determination of swelling potential of soil. ASTM D 2435, Annual Book of ASTM Standards, V. 04008, Philadelphia (1994)

  76. Rayment, G.E.; Higginson, F.R.: Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne. (Australian Soil and Land Survey Handbook, vol. 3) (1922)

  77. ASTM: Standard test methods for moisture, ash, and organic matter of peat and organic soils. ASTM D 2974, Annual Book of ASTM Standards, V. 04008, Philadelphia (1994)

  78. Yeşilbaş, G.: Stabilization of expansive soils using aggregate waste, rock powder and lime (Masters dissertation, The Middle East Technical University). ProQuest LLC. (2004)

  79. Way, J.T.: On the power of soils to absorb manure. J. R. Ag. Soc. Eng. 13, 123–143 (1852)

    Google Scholar 

  80. Kelley, W.P.; Cummins, A.B.: Chemical effects of salts on soils. Soil Sci. 11, 139–159 (1921)

    Google Scholar 

  81. Shainberg, I.; Letey, J.: Response of soils to sodic and saline conditions. Hilgardia 52(2), 1–57 (1984)

    Google Scholar 

  82. Warkentin, B.P.; Bolt, G.H.; Miller, R.D.: Swelling pressure of montmorillonite. Soil. Sci. Soc. Am. Proc. 21, 97–495 (1957)

    Google Scholar 

  83. Van Lier, J.A.; Bruyn, P.L.; Overbeck, J.T.G.: The solubility of quartz. J. Phys. Chem. 64(11), 1675–1682 (1960)

    Google Scholar 

  84. Carroll, D.; Starkey, H.C.: Reactivity of clay minerals with acids and alkalies. Clays Clay Min. 19, 321–333 (1971)

    Google Scholar 

  85. Tingle, J.S.; Newman, J.K.; Larson, S.L.; Weiss, C.A.; Rushing, J.F.: Stabilization mechanisms of nontraditional additives. Transp. Res. Rec. 1989(1), 59–67 (2007)

    Google Scholar 

  86. Ahmad, F.; Atemimi, Y.K.; Ismail, M.A.M.: Evaluation the effects of styrene butadiene rubber addition as a new soil stabilizer on geotechnical properties. Electron. J. Geol. Eng. 18, 735–748 (2013)

    Google Scholar 

  87. Jianli, M.; Youcai, Z.; Jinmei, W.; Li, W.: Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Constr. Build. Mater. 24(1), 79–83 (2010)

    Google Scholar 

  88. Christhy, V.R.M.; Jorge, E.R.P.: Sodium aluminates obtained from the (NO3)3 • 9H2O - NaOH system using the controlled precipitation method. Ingeniería e Investigación 30(2), 16–24 (2010)

    Google Scholar 

  89. Kunde, G.B.; Yadav, G.D.: Synthesis, characterization and application of iron-aluminate nodules in advanced Fenton’s oxidation process. J. Environ. Chem. Eng. 3(3), 2010–2021 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank Faculty of Science, Ain Shams University for the strong support in providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad Mohamed Hossam Makeen.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeen, G.M.H., Awad, S.A. & Dilawar, H. Amelioration of Soil Expansion Using Sodium Chloride with Long-Term Monitoring of Microstructural and Mineralogical Alterations. Arab J Sci Eng 46, 4461–4476 (2021). https://doi.org/10.1007/s13369-020-04966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04966-w

Keywords

Navigation