Skip to main content
Log in

Antiradical Properties of trans-2-(4-substituted-styryl)-thiophene

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

2-substituted thiophene compounds with electron donating and electron withdrawing p-phenyl substitution were synthesized and studied their radical scavenging properties using DPPH assay and DFT method. It is shown that p-hydroxy and p-amino phenyl substituted compound exhibit radical scavenging activity. From DFT and radical scavenging studies, a correlation between IC50 with the bond dissociation enthalpy, proton affinity, ground state dipole moment and optical band gap of compound is found. Compounds 13 with electron withdrawing substituent (NO2, CN, Cl) do not show any radical scavenging properties, whereas compounds 67 with electron donating substituent (OH, NH2) show antiradical properties. Further, the antiradical activity is reduced drastically by replacing the -OH and -NH2 with methoxy and -N-alkylating group respectively in 6 and 7. The compound with p-hydroxy phenyl substitution, exhibits stronger antiradical activity as compared to the p-amino phenyl substitution due to smaller O-H bond dissociation energy as compared to the N-H bond. From DPPH and DFT studies, it is suggested that the radical scavenging activity in 2-substituted thiophene is occurred through proton transfer mechanism. The other possible SET, SPLET mechanisms are also corroborated.

Antiradical properties of trans-2-(4-substituted-styryl)-thiophene Anamika Gusain, Naresh Kumar, Jagdeep Kumar, Gunjan Pandey, Prasanta Kumar Hota*

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Yehye WA, Rahman NA, Ariffin A, Hamid SBA, Alhadi AA, Kadir FA, Yaeghoobi M (2015) Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur J Med Chem 101:295–312

    CAS  PubMed  Google Scholar 

  2. Jahnert T, Hager MD, Schubert US (2014) Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes. J Mater Chem A 2:15234–15251

    Google Scholar 

  3. Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    CAS  PubMed  Google Scholar 

  4. Schmidt S, Pokorny J (2005) Potential application of oilseeds as sources of antioxidants for food lipids - a review. Czech J Food Sci 23:93–102

    CAS  Google Scholar 

  5. Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci 87:2506–2510

    CAS  PubMed  Google Scholar 

  6. Lunder TL (1992) Catechins of green tea: antioxidant activity. In M. T. Huang, C. T. Ho, and C.Y. Lee. Eds., Phenolic compounds in Food and their effects on health. II. Antioxidants and cancer prevention. Am Chem Soc Sympos Ser. 114–120

  7. Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Oliveros E (1993) Antioxidant activities of flavonoids: efficiency of singlet oxygen quenching. J Photochem Photobiol B 19:205–215

    CAS  PubMed  Google Scholar 

  8. Po-Geller B, Reiter RJ, Hardeland R, Tan DX, Barlow-Walden LR (1996) Melatonin and structurally related endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep 2:179–184

    Google Scholar 

  9. Kohen R, Jamamoto J, Cundi KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Nat. Acad. Sci. 81:3175–3179

    Google Scholar 

  10. Richard AL (1997) Naturally occurring antioxidants. Lewis publishers. New York, 1st edition

  11. Cheynier V (2005) Polyphenols in foods are more complex than often though. Am J Clin Nutr 81:223S–229S

    CAS  PubMed  Google Scholar 

  12. Morse ML, Dahl RH (1978) Cellular glutathione is a key to the oxygen effect in radiation damage. Nature 271:660–662

    CAS  PubMed  Google Scholar 

  13. Hausladen A, Alscher RG (1993) Gluthanione antioxidants in higher plants. CRC Press, Boca Raton, FL, pp 1–30

    Google Scholar 

  14. Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Influence of VV-B irradiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 30:2101–2108

    CAS  Google Scholar 

  15. Aruoma OI (1993) Free radicals and food. Chem Brit:210–214

  16. Osawa T, Kumazawa S, Kawakishi S (1991) Prunusols A and B, novel antioxidative tocopherol derivatives isolated from the leaf wax of Prunusgrayana maxim. Agric Biol Chem 55:1727–1731

    CAS  Google Scholar 

  17. Simic MG, Jovanovic SV (1989) Antioxidation mechanisms of uric acid. J Am Chem Soc 111:5778–5882

    CAS  Google Scholar 

  18. Graf E (1992) Antioxidant potential of ferulic acid. Free Rad. Biol. Med. 13:435–448

    CAS  PubMed  Google Scholar 

  19. Terao J, Karasawa H, Arai H, Nagao A, Suzuki T (1993) Peroxyl radical scavenging efficiency of caffeic acid and its related phenolic compounds in solution. Biosci Biotechnol Biochem 57:1204–1205

    CAS  PubMed  Google Scholar 

  20. Tonnesen HH, Greenhill JV (1992) Studies on coumarine and cucurminoids. XXII. Curcumin as a reducing agent and as a radical scavenger. Int J Pharmaceut 87:79–87

    Google Scholar 

  21. Tonnesen HH, Smistad G, Agren T, Karlsen J (1993) Studies on coumarine and cucurminoids. XXIII. Effects of Curcumin on liposomal lipid peroxidation. Int J Pharmaceut 90:221–228

    Google Scholar 

  22. Bhattacharya M, Mandal P, Sen A (2009) In vitro detection of antioxidants in different solvent fractions of ginger (Zingiber officinale Rosc.), Indian. J Plant Physiol 14:23–27

    Google Scholar 

  23. Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin-bound bilirubin. Proc Nat Acad Sci 84:5918–5922

    CAS  PubMed  Google Scholar 

  24. Jiang L (2010) Efficacy of antioxidant vitamins and selenium supplement in prostate cancer prevention: a meta-analysis of randomized controlled trials. Nutr Cancer 62:719–727

    CAS  PubMed  Google Scholar 

  25. Abner EL (2011) Vitamin E and all-cause mortality: a meta-analysis. Current Aging Science 4:158–170

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bjelakovic G, Dimitrinka N, Christian G (2013) Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One 8:74558–74755

    Google Scholar 

  27. Palozza P (2002) Design, synthesis, and antioxidant activity of FeAOX-6, a novel agent deriving from a molecular combination of the chromanyl and polyisoprenyl moieties. Free Rad Biol Med 33:1724–1735

    CAS  PubMed  Google Scholar 

  28. Estevao MS, Carvalho LC, Ribeiro D, Couto D, Freitas M, Gomes A, Marques MMB (2010) Antioxidant activity of unexplored indole derivatives: synthesis and screening. Eur J Med Chem 45:4869–4878

    CAS  PubMed  Google Scholar 

  29. Mahajan P (2017) Synthesis, antioxidant, and anti-inflammatory evaluation of novel thiophene-fused quinoline based β-diketones and derivatives. J Heterocy Chem 54:1415–1422

    CAS  Google Scholar 

  30. Shen T, Wang X-N, Lou H-X (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935

    CAS  PubMed  Google Scholar 

  31. Jagtap UB, Bapat VA (2010) Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 129:142–166

    CAS  PubMed  Google Scholar 

  32. Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L, Medina-Bolivar F (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia michx.). J Agr Food Chem 61:11744–11758

    CAS  Google Scholar 

  33. Charles DJ (2013) Antioxidant properties of spices, herbs and other sources. Springer, New York

    Google Scholar 

  34. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanism. RSC Adv 5:27986–28006

    CAS  Google Scholar 

  35. Fan G-J, Liu X-D, Qian Y-P, Shang Y-J, Li X-Z, Dai F, Fang J-G, Jin X-L, Zhou B (2009) 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Biorg Med Chem 17:2360–2365

    CAS  Google Scholar 

  36. Tang J-J, Fan G-J, Dai F, Ding D-J, Wang Q, Lu D-L, Li R-R, Li X-Z, Hu L-M, Jin X-L, Zhou B (2011) Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic Biol Med 50:1447–1457

    CAS  PubMed  Google Scholar 

  37. Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, Zhou S, Yang T, Mei Q (2013) Comparison of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8:e54505

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Madadi NR, Zong H, Ketkar A, Zheng C, Penthala NR, Janganati V, Bommagani S, Eoff RL, Guzman ML, Crooks PA (2015) Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin. Med Chem Comm 6:788–794

    CAS  Google Scholar 

  39. Kumar S, Engman L, Valgimigli L, Amorati R, Fumo MG, Pedulli GF (2007) Antioxidant profile of ethoxyquin and some of its S, se and Te analogues. J. Org. Chem. 72:6046–6055

    CAS  PubMed  Google Scholar 

  40. Kar S, Ramamoorthy G, Sinha S, Ramanan M, Pola JK, Golakoti NR, Nanubolu JB, Sahoo SK, Dandamudi RB, Doble M (2019) Synthesis of diarylidenecyclohexanone derivatives as potential anti-inflammatory leads against COX- 2/mPGES1 and 5-LOX. New J Chem 43:9012–9020

    CAS  Google Scholar 

  41. Shanty AA, Mohanan PV (2018) Heterocyclic schiff bases as non toxic antioxidants: solvent effect, structure activity relationship and mechanism of action. Spectrochim Acta A 192:181–187

    CAS  Google Scholar 

  42. Tenti G, Egea J, Villarroya M, Leon R, Fernandez JC, Padin JF, Sridharan V, Ramos MT, Menendez JC (2013) Identification of 4,6-diaryl-1,4-dihydropyridines as a new class of neuroprotective agents. Med Chem Commun 4:590–594

    CAS  Google Scholar 

  43. Aguiara ACV, Moura RO, Junior JFBM, Rocha HAO, Camara RBG, Schiavona MSC (2016) Evaluation of the antiproliferative activity of 2-amino thiophene derivatives against human cancer cells lines. Biomed Pharmacother 84:403–414

    Google Scholar 

  44. Cardoso LNF, Nogueira TCM, Rodrigues FAR, Oliveira ACA, dos Santos Luciano MC, Pessoa C, de Souza MVN (2017) N-acylhydrazones containing thiophene nucleus: a new anticancer class. Med Chem Res 26:1605–1608

    CAS  Google Scholar 

  45. Luo Y, Li X, Chen T, Wang Y, Zheng W (2012) Synthesis of a novel thiophene derivative that induces cancer cell apoptosis through modulation of AKT and MAPK pathways. Med Chem Commun 3:1143–1146

    CAS  Google Scholar 

  46. Zoubi WA, Mohamed SG, A-Hamdani AAS, Mahendradhany AP, Ko YG (2018) Acyclic and cyclic imines and their metal complexes: recent progress in biomaterial and corrosion applications. RSC Adv 8:23294–23318

    Google Scholar 

  47. Singh AK, Hota PK (2003) Photoreactivity of donor-acceptor ethenes. Indian J Chem B 42:2048–2053

    Google Scholar 

  48. Singh AK, Hota PK (2005) Absorption and fluorescence spectral properties of donor acceptor ethenes bearing indole and p-nitrophenyl substituents. Res Chem Intermed 31:85–101

    CAS  Google Scholar 

  49. Singh AK, Hota PK (2006) Fluorescence and photoisomerization studies of p-nitrophenyl substituted indolic ethenes. J Phys Org Chem 19:43–52

    CAS  Google Scholar 

  50. Singh AK, Hota PK (2007) Ethenyl indoles as neutral hydrophobic fluorescence probes. J Phys Org Chem 20:624–629

    CAS  Google Scholar 

  51. Kumar N, Kumar J, Hota PK (2017) Substituent dependence charge transfer and photochemical properties of donor-acceptor substituted ethenyl thiophenes. J Fluoresc 27:1729–1738

    CAS  PubMed  Google Scholar 

  52. Kumar N, Paramasivam M, Kumar J, Gusain A, Hota PK (2018) Substituent dependent optical properties of p-phenyl substituted ethenyl-E-thiophenes. J Fluoresc 28:1207–1216

    CAS  PubMed  Google Scholar 

  53. Kumar N, Kumar J, Hota PK (2018) Substituent dependent photoreactivity of donor- acceptor substituted phenyl ethenes. Lett Org Chem 15:479–484

    CAS  Google Scholar 

  54. Kumar N, Paramasivam M, Kumar J, Gusain A, Hota PK (2019) Tuning of optical properties of p-phenyl ethenyl -E-furans: A solvatochromism and density functional theory. Spectrochim Acta A 206:396–404

    CAS  Google Scholar 

  55. Wadsworth WS Jr, Emmons WD (1961) The utility of phosphonate carbanions in olefin synthesis. J Am Chem Soc 83:1733–1738

    CAS  Google Scholar 

  56. Singh AK, Hota PK (2006) Substituent directed distal photoisomerisation of indolic dienyl chromophores. Indian J. Chem. B 45:2469–2473

    Google Scholar 

  57. Marinova G, Batchvarov V (2011) Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg J Agric Sci 17:11–24

    Google Scholar 

  58. F. Neese, The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2 (2012) 73–78

  59. Dreuw A, Head-Gordon M (2005) Single reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    CAS  PubMed  Google Scholar 

  60. Kulhánek J, Bureš F, Wojciechowski A, Makowska-Janusik M, Gondek E, Kityk IV (2010) Optical operation by chromophores featuring 4,5-dicyanoimidazole embedded within poly (methyl methacrylate) matrices. J Phys Chem A 114:9440–9446

    PubMed  Google Scholar 

  61. Weigend F, Ahlrichs R (2005) Balance basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  PubMed  Google Scholar 

  62. Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125:288–306

    CAS  Google Scholar 

  63. DiLabio GA (1999) Using locally dense basis sets for the determination of molecular properties. J Phys Chem A 103:11414–11424

    CAS  Google Scholar 

  64. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    CAS  PubMed  Google Scholar 

  65. Mahoney LR, Ferris FC, DaRooge MA (1969) Calorimetric study of the 2,4,6-tri-tert- butylphenoxy radical in solution. J Am Chem Soc 91:3883–3889

    CAS  Google Scholar 

  66. Denisov ET, Khudyakov IV (1987) Mechanisms of action and reactivities of the free radicals of inhibitors. Chem Rev 87:1313–1357

    CAS  Google Scholar 

  67. Markovic ZS, Mentus SV, Dimitric Markovic JM (2009) Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity. J Phys Chem A 113:14170–14179

    CAS  PubMed  Google Scholar 

  68. Xue Y, Zheng Y, Zhang L, Wu W, Yu D, Liu Y (2013) Theoretical study on the antioxidant properties of 2′-hydroxychalcones: H-atom vs. electron transfer mechanism. J Mol Model 19:3851–3862

    CAS  PubMed  Google Scholar 

  69. Farmanzadeh D, Najafi M (2013) On the antioxidant activity of the tryptophan derivatives. Bull Chem Soc Jpn 86:1041–1050

    CAS  Google Scholar 

  70. Kumar J, Kumar N, Sati N, Hota PK (2020) Antioxidant properties of ethenyl indole: DPPH assay and TDDFT studies. New J Chem 44:8960–8970

    CAS  Google Scholar 

  71. Kancheva VD, Saso L, Angelova SE, Foti MC, Slavova-Kasakova A, Daquino C, Enchev V, Firuzi O, Nechev J (2012) Antiradical and antioxidant activities of new bio-antioxidants. Biochimie. 94:403–415

    CAS  PubMed  Google Scholar 

  72. Nakanishi I, Shimada T, Ohkubo K, Manda S, Shimizu T, Urano S, Okuda H, Miyata N, Ozawa T, Anzai K, Fukuzumi S, Ikota N, Fukuhara K (2007) Involvement of electron transfer in the radical-scavenging reaction of resveratrol. Chem Lett 36:1276–1277

    CAS  Google Scholar 

  73. Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA (1997) Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett 418:91–97

    CAS  PubMed  Google Scholar 

  74. Liebler DC, McClure TD (1996) Antioxidant reactions of β-carotene: identification of carotenoid-radical adducts. Chem Res Toxicol 9:8–11

    CAS  PubMed  Google Scholar 

  75. Dorovic J, Dimitric Markovic JM, Stepanic V, Begovic N, Amic D, Markovic Z (2014) Influence of different free radicals on scavenging potency of gallic acid. J Mol Model 20:2345

    PubMed  Google Scholar 

  76. Alberto ME, Russo N, Grand A, Galano A (2013) A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys Chem Chem Phys 15:4642–4650

    CAS  PubMed  Google Scholar 

  77. Nakanishi I, Kawashima T, Ohkubo K, Kanazawa H, Inami K, Mochizuki M, Fukuhara K, Okuda H, Ozawa T, Itoh S, Fukuzumi S, Ikota N (2005) Electron-transfer mechanism in radical-scavenging reactions by a vitamin E model in a protic medium. Org Biomol Chem 3:626–629

    CAS  PubMed  Google Scholar 

  78. Ouchi A, Nagaoka SI, Abe K, Mukai K (2009) Kinetic study of the aroxyl radical-scavenging reaction of α- tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates. J Phys Chem B 113:13322–13331

    CAS  PubMed  Google Scholar 

  79. Iuga C, Alvarez-Idaboy JR, Russo N (2012) Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study. J Org Chem 77:3868–3877

    CAS  PubMed  Google Scholar 

  80. Leopoldini M, Chiodo SG, Russo N, Toscano M (2011) Detailed investigation of the OH radical quenching by natural antioxidant caffeic acid studied by quantum mechanical models. J Chem Theory Comput 7:4218–4233 (ACS)

    CAS  PubMed  Google Scholar 

  81. Klein E, Lukes V (2007) DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of sequential proton loss electron transfer mechanism of phenols antioxidant action: correlation with phenolic CO bond length. J Mol Struct THEOCHEM 805:153–160

    CAS  Google Scholar 

  82. Burton GW, Ingold KU (1986) Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 19:194–201

    CAS  Google Scholar 

  83. King A, Young G (1999) Characteristics and occurrence of phenolic phytochemicals. J Am Diet Assoc 99:213–218

    CAS  PubMed  Google Scholar 

  84. Ban F, Lundqvist MJ, Boyd RJ, Eriksson LA (2002) Theoretical studies of the cross-linking mechanisms between cytosine and tyrosine. J Am Chem Soc 124:2753–2761

    CAS  PubMed  Google Scholar 

  85. Fang Y, Liu L, Feng Y, Li X-S, Guo Q-X (2002) Effects of hydrogen bonding to amines on the phenol/phenoxyl radical oxidation. J Phys Chem A 106:4669–4678

    CAS  Google Scholar 

  86. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agr Food Chem 51:2866–2887

    CAS  Google Scholar 

  87. Singh N, Loader RJ, O’Malley PJ, Popelier PLA (2006) Computation of relative bond dissociation enthalpies (ΔBDE) of phenolic antioxidants from quantum topological molecular similarity (QTMS). J Phys Chem A 110:6498–6503

    CAS  PubMed  Google Scholar 

  88. Li MJ, Liu WX, Peng CR, Ren QH, Lu WC, Deng W (2013) A DFT study on reaction of eupatilin with hydroxyl radical in solution. Int J Quantum Chem 113:966–974

    CAS  Google Scholar 

Download references

Acknowledgements

PKH, AG, NK and JK are grateful to University Grants Commission, New Delhi for research grant (No F.30-72/2014-BSR) and research fellowship. GP is the recipient of national postdoctoral research fellowship from Department of Science & Technology (DST), New Delhi. Authors acknowledged AMRC, IIT Mandi for 1H NMR and 13C NMR facility.

Author information

Authors and Affiliations

Authors

Contributions

PKH, AG, NK synthesized and characterized the compounds using 1H and 13C NMR, GC-MS, FTIR techniques. PKH, AG, NK carried out the absorption, fluorescence measurement and analyzed the data. PKH, AG, NK and GP measured the antiradical activity. PKH and JK designed and JK carried out the DFT calculation. PKH, AG and NK wrote the paper.

Corresponding author

Correspondence to Prasanta Kumar Hota.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Thiophene compounds with p-hydroxy and p-amino phenyl substitutent, exhibit antiradical activity with IC50 range from 45 μM to 165μM . The activity is comparable to vitamin E (IC50 : 26 μM)

Correlation between the anti-radical activity with the ground state dipole moment, bond dissociation enthalpy, ionization potential and proton affinity of thiophene compound is elucidated.

In thiophene compounds, the radical scavenging activity is predominantly occurred through hydrogen atom transfer mechanism. The other possible mechanisms such as SET, SPLET are also discussed.

Electronic supplementary material

ESM 1

(PDF 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusain, A., Kumar, N., Kumar, J. et al. Antiradical Properties of trans-2-(4-substituted-styryl)-thiophene. J Fluoresc 31, 51–61 (2021). https://doi.org/10.1007/s10895-020-02629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02629-5

Keywords

Navigation