Skip to main content
Log in

Strongly irreducible factorization of quaternionic operators and Riesz decomposition theorem

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

Let \(\mathcal {H}\) be a right quaternionic Hilbert space and let T be a bounded quaternionic normal operator on \(\mathcal {H}\). In this article, we show that T can be factorized in a strongly irreducible sense, that is, for any \(\delta >0\) there exist a compact operator K with the norm \(\Vert K\Vert < \delta\), a partial isometry W and a strongly irreducible operator S on \(\mathcal {H}\) such that

$$\begin{aligned} T = (W+K)S. \end{aligned}$$

We illustrate our result with an example. In addition, we discuss the quaternionic version of the Riesz decomposition theorem and obtain a consequence that if the S-spectrum of a bounded (need not be normal) quaternionic operator is disconnected by a pair of disjoint axially symmetric closed subsets, then the operator is strongly reducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, S.L.: Quaternionic quantum mechanics and quantum fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Alpay, D., Colombo, F., Gantner, J., Sabadini, I.: A new resolvent equation for the \(S\)-functional calculus. J. Geom. Anal. 25(3), 1939–1968 (2015)

    Article  MathSciNet  Google Scholar 

  3. Alpay, Daniel, Colombo, Fabrizio, Kimsey, David P.: The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum. J. Math. Phys. 57 (2016), no. 2, 023503, 27 pp

  4. Colombo, F., Gantner, J., Kimsey, D.P.: Spectral theory on the S-spectrum for quaternionic operators, Operator Theory: Advances and Applications, 270. Birkhäuser/Springer, Cham (2018)

    Book  Google Scholar 

  5. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative functional calculus, progress in mathematics, 289. Birkhäuser/Springer Basel AG, Basel (2011)

    Book  Google Scholar 

  6. Conway, J.B.: A course in functional analysis, Graduate Texts in Mathematics, 96. Springer-Verlag, New York (1985)

    Book  Google Scholar 

  7. Hamilton, W.R.: Elements of quaternions. Part 1, reprint of the 1866 original. Cambridge Library Collection, Cambridge University Press, Cambridge (2009)

    Google Scholar 

  8. Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: Foundations of quaternion quantum mechanics. J. Math. Phys. 3, 207–220 (1962)

    Article  MathSciNet  Google Scholar 

  9. Ghiloni, R., Moretti, V., Perotti, A.: Continuous slice functional calculus in quaternionic Hilbert spaces. Rev. Math. Phys. 25(4), 83 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gilfeather, F.: Strong reducibility of operators, Indiana Univ. Math. J. 22 (1972/73), 393–397

  11. Halmos, P.R.: A Hilbert space problem book, second edition, Graduate Texts in Mathematics, 19. Springer-Verlag, New York (1982)

    Book  Google Scholar 

  12. Hou, B., Tian, G.: Geometry and operator theory on quaternionic Hilbert spaces. Ann. Funct. Anal. 6(4), 226–246 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hou, B., Tian, G.: Square root for backward operator weighted shifts with multiplicity 2. Banach J. Math. Anal. 6(2), 192–203 (2012)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Z.L.: Topics in operator theory. Jilin University, Jilin (1979)

    Google Scholar 

  15. Luo, J., Li, J., Tian, G.: On a factorization of operators on finite dimensional Hilbert spaces. Turkish J. Math. 40(5), 1110–1113 (2016)

    Article  MathSciNet  Google Scholar 

  16. Radjavi, H., Rosenthal, P.: Invariant subspaces. Springer-Verlag, New York (1973)

    Book  Google Scholar 

  17. Ramesh, G., Santhosh Kumar, P.: Spectral theorem for quaternionic normal operators: multiplication form. Bull. Sci. Math. 159, 102840 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ramesh, G., Kumar, P.Santhosh: Borel functional calculus for quaternionic normal operators. J. Math. Phys. 58(5), 053501, 16 pp (2017)

    Article  MathSciNet  Google Scholar 

  19. Ramesh, G., Kumar, P. S.: On the polar decomposition of right linear operators in quaternionic Hilbert spaces. J. Math. Phys. 57 (2016), no. 4, 043502, 16 pp

  20. Teichmüller, O.: Operatoren im Wachsschen Raum. J. Reine Angew. Math. 174, 7–124 (1936)

    MathSciNet  MATH  Google Scholar 

  21. Tian, G., Cao, Y., Ji, Y., Li, J.: On a factorization of operators as a product of an essentially unitary operator and a strongly irreducible operator. J. Math. Anal. Appl. 429(1), 1–15 (2015)

    Article  MathSciNet  Google Scholar 

  22. Wiegmann, N.A.: Some theorems on matrices with real quaternion elements. Can. J. Math. 7, 191–201 (1955)

    Article  MathSciNet  Google Scholar 

  23. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank NBHM (National Board for Higher Mathematics, India) for financial support with ref No. 0204/66/2017/R&D-II/15350, and also Indian Statistical Institute Bangalore for providing necessary facilities to carry out this work.

We wish to express our sincere gratitude to Professor B.V. Rajarama Bhat for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhosh Kumar Pamula.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by Jan Stochel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pamula, S.K. Strongly irreducible factorization of quaternionic operators and Riesz decomposition theorem. Banach J. Math. Anal. 15, 9 (2021). https://doi.org/10.1007/s43037-020-00084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-020-00084-9

Keywords

Mathematics Subject Classification

Navigation