Skip to main content
Log in

Nitrogen Doping of Carbon Nanotubes Synthesized in Flowing Acetylene and Ammonia

  • Published:
Inorganic Materials Aims and scope

Abstract

A method has been demonstrated for doping carbon nanotubes (CNTs) with nitrogen during synthesis in an acetylene + ammonia atmosphere at different temperatures in the range 550–750°C, and conditions have been found for effective nitrogen doping of CNTs depending on synthesis temperature. The concentrations of various elements in the synthesized CNTs have been determined by X-ray photoelectron spectroscopy. Raman measurements with the use of a Raman microscope have made it possible to follow variations in the relative intensities of the G and D bands as functions of nitrogen dopant concentration in the CNTs. We have detected strong Raman overtone combination satellites whose parameters depend on the structural perfection of the synthesized CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bulyarskiy, S.V. and Saurov, A.N., Doping of Carbon Nanotubes, Springer International, 2018. https://doi.org/10.1007/978-3-319-55883-7

  2. Bulyarskiy, S.V. and Basaev, A.S., Thermodynamics and kinetics of adsorption of atoms and molecules by carbon nanotubes, J. Exp. Theor. Phys., 2009, vol. 135, no. 4, pp. 668–679.

    Google Scholar 

  3. Saurov, A.N. and Bulyarskiy, S.V., Alloying carbon nanotubes, Russ. Microelectron., 2017, vol. 46, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  4. Tchernatinsky, A., Nagabhinrava, B., and Desai, S., Adsorption oxygen molecules on individual carbon single-walled nanotubes, arXiv: cond-mat,2005, paper 0502012.

  5. Zhang, Z. and Cho, K., Ab initio study of hydrogen interaction with pure and nitrogen-doped carbon nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, no. 7, paper 075420.

  6. Bogdanova, D.A. and Bulyarskiy, S.V., Regular chemisorption of hydrogen on achiral single-walled carbon nanotubes, Phys. Solid State, 2016, vol. 58, no. 7, pp. 1407–1411.

    Article  CAS  Google Scholar 

  7. Jegouso, D., Usachov, O., Vilkov, A., Guneis, D., Haberer, A., Fedorov, V.K., Adamchuk, A.B., Preobrajenski, P., Dudin, A., Barinov, M., Oehzelt, C., and Laubschat, D., Nitrogen-doped graphene: efficient growth, structure, and electronic properties, Nano Lett., 2011, vol. 11, pp. 5401–5407.

    Article  Google Scholar 

  8. Arenal, R., March, K., Ewels, C.P., Rocquefelte, X., Kociak, M., and Loiseau, A., Atomic configuration of nitrogen-doped single-walled carbon nanotubes, Nano Lett., 2014, vol. 14, pp. 5509–5516. https://doi.org/10.1021/nl501645g

    Article  CAS  PubMed  Google Scholar 

  9. Sumpter, B.G., Meunier, V., Romo-Herrera, J.M., Cruz-Silva, E., Cullen, D.A., Terrones, H., et al., Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation, ACS Nano, 2007, vol. 1, pp. 369–375.

    Article  CAS  Google Scholar 

  10. Gorelik, V.S. and Pyatyshev, A.Yu., Raman spectroscopy of DNA in a wide frequency range, Phys. Wave Phenom., 2014, vol. 22, no. 4, pp. 252–254.

    Article  Google Scholar 

  11. Gorelik, V.S. and Sverbil’, P.P., Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1104–1110.

    Article  CAS  Google Scholar 

  12. Moiseenko V.N., Brynza N.P., Abu Sal B., Holze R., Gorelik V.S., and Sverbil’ P.P., Raman Scattering in Nanocomposites Based on Synthetic Opal and Nanocrystalline Bi2TeO5, Inorg. Mater., 2018, vol. 54, no. 12, pp. 1260–1265.

    Google Scholar 

  13. Huang, J.Q., Zhao, M.Q., Zhang, Q., Nie, J.Q., Yao, L.D., Su, D.S., and Wei, F., Efficient synthesis of aligned nitrogen-doped carbon nanotubes in a fluidized-bed reactor, Catal. Today, 2012, vol. 186, pp. 83–92.

    Article  CAS  Google Scholar 

  14. Webster, S., Maultzsch, J., Thomsen, C., Liu, J., Czerw, R., Terrones, M., Adar, F., John, C., Whitley, A., and Carroll, D.L., Raman characterization of nitrogen doped multiwalled carbon nanotubes, Mater. Res. Soc. Symp. Proc., 2003, vol. 772, pp. M7.8.1–M7.8.8.

  15. Yang, J.H., Kim, B.J., Kim, Y.H., Lee, Y.J., Ha, B.H., Shin, Y.S., Park, S.Y., Kim, H.S., and Park, C.Y., Nitrogen-incorporated multiwalled carbon nanotubes grown by direct current plasma-enhanced chemical vapor deposition, J. Vac. Sci. Technol., 2005, vol. 23, no. 3, pp. 930–933.

    Article  CAS  Google Scholar 

  16. Puretzky, A.A., Geohegan, D.B., Jesse, S., Ivanov, I.N., and Eres, G., In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A, 2005, vol. 81, pp. 223–240.

    Article  CAS  Google Scholar 

  17. Bulyarskiy, S.V., Lakalin, A.V., Pavlov, A.A., Dudin, A.A., Kitsyuk, E.P., Eganova, E.M., Sirotina, A.P., and Shamanaev, A.A., A model of carbon-nanotube growth-rate limitation on thin-film catalysts, Tech. Phys. Lett., 2017, vol. 43, no. 4, pp. 366–368.

    Article  CAS  Google Scholar 

  18. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 2005, vol. 43, pp. 1731–1742.

    Article  CAS  Google Scholar 

  19. Tuinstra, F. and Koenig, J.L., Raman spectrum of graphite, J. Chem. Phys., 1970, vol. 53, pp. 1126–1130.

    Article  CAS  Google Scholar 

  20. Wang, Y., Alsmeyer, D.C., and McCreery, R.L., Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 1990, vol. 2, pp. 557–563.

    Article  CAS  Google Scholar 

  21. Jawhari, T., Roid, A., and Casado, J., Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 1995, vol. 33, pp. 1561–1565.

    Article  CAS  Google Scholar 

  22. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., and Tascon, J.M.D., Raman microprobe studies on carbon materials, Carbon, 1994, vol. 32, pp. 1523–1532.

    Article  CAS  Google Scholar 

  23. Dippel, B., Jander, H., and Heintzenberg, J., NIR FT Raman spectroscopic study of flame soot, PhysChemChemPhys, 1999, vol. 1, pp. 4707–4712.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, project no. 0004-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Gorelik, V.S. & Ryazanov, R.M. Nitrogen Doping of Carbon Nanotubes Synthesized in Flowing Acetylene and Ammonia. Inorg Mater 56, 1006–1010 (2020). https://doi.org/10.1134/S0020168520100027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520100027

Keywords:

Navigation