Skip to main content
Log in

Influence of Mechanical Processing and the Procedure Used to Introduce a Carbon Material on the Electrochemical Properties of Li4Ti5O12/C Composites

  • Published:
Inorganic Materials Aims and scope

Abstract

Li4Ti5O12/C anode materials of different particle size have been prepared by a sol–gel process, followed by mechanical processing in a planetary mill. Carbon was introduced both by an in situ process and by mechanically mixing lithium titanate with carbon black (Timcal). The materials thus prepared have been characterized by X-ray diffraction, electron microscopy, and low-temperature nitrogen adsorption measurements and electrochemically tested. The decrease in the particle size of Li4Ti5O12 with increasing milling rate is larger in the case of the composites containing carbon black (Timcal). At a low charge/discharge rate (0.1C), the electrochemical capacity of the composites processed in a planetary mill at rotation rates of ≤400 rpm exceeds that of the pristine Li4Ti5O12. At high current densities (18C), the Li4Ti5O12/carbon black (Timcal) composite processed at 200 rpm exhibits the highest electrochemical capacity (107 mAh/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cebulla, F., Naegler, T., and Pohl, M., Electrical energy storage in highly renewable european energy systems: capacity requirements, spatial distribution, and storage dispatch, J. Energy Storage, 2017, vol. 14, pp. 211–223. https://doi.org/10.1016/j.est.2017.10.004

    Article  Google Scholar 

  2. Zubi, G., Dufo-López, R., Carvalho, M., and Pasaoglu, G., The lithium-ion battery: state of the art and future perspectives, Renewable Sustainable Energy Rev., 2018, vol. 89, pp. 292–308. https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  3. Paterakis, N.G., Erdinc, O., and Catalão, J.P.S., An overview of demand response: key-elements and international experience, Renewable Sustainable Energy Rev., 2017, vol. 69, pp. 871–891. https://doi.org/10.1016/j.rser.2016.11.167

    Article  Google Scholar 

  4. Stenina, I.A. and Yaroslavtsev, A.B., Nanomaterials for lithium-ion batteries and hydrogen energy, Pure Appl. Chem., 2017, vol. 89, no. 8, pp. 1185–1194. https://doi.org/10.1515/pac-2016-1204

    Article  CAS  Google Scholar 

  5. Yi, T.-F., Jiang, L.-J., Shu, J., Yue, C.-B., Zhu, R.-S., and Qiao, H.-B., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, J. Phys. Chem. Solids, 2010, vol. 71, pp. 1236–1242. https://doi.org/10.1016/j.jpcs.2010.05.001

    Article  CAS  Google Scholar 

  6. Han, C., He, Y.-B., Liu, M., Li, B., Yang, Q.-H., Wong, C.-P., and Kang, F., A review of gassing behavior in Li4Ti5O12-based lithium ion batteries, J. Mater. Chem. A, 2017, vol. 5, pp. 6368–6381. https://doi.org/10.1039/C7TA00303J

    Article  CAS  Google Scholar 

  7. Sun, X., Radovanovic, P.V., and Cui, B., Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries, New J. Chem., 2015, vol. 39, pp. 38–63. https://doi.org/10.1039/C4NJ01390E

    Article  CAS  Google Scholar 

  8. Ohzuku, T., Ueda, A., and Yamamoto, N., Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc., 1995, vol. 142, pp. 1431–1435. https://doi.org/10.1149/1.2048592

    Article  CAS  Google Scholar 

  9. Xu, G., Han, P., Dong, S., Liu, H., Cui, G., and Chen, L., Li4Ti5O12-based energy conversion and storage systems: Status and prospects, Coord. Chem. Rev., 2017, vol. 343, pp. 139–184. https://doi.org/10.1016/j.mser.2015.10.001

    Article  CAS  Google Scholar 

  10. Yi, T.-F., Yang, S.-Y., and Xie, Y., Recent advances of Li4Ti5O12 as promising next generation anode material for high power lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, pp. 5750–5777. https://doi.org/10.1039/C4TA06882C

    Article  CAS  Google Scholar 

  11. Song, M.-S., Kim, R.-H., Baek, S.-W., Lee, K.-S., Park, K., and Benayad, A., Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte, J. Mater. Chem. A, 2014, vol. 2, pp. 631–636. https://doi.org/10.1039/C3TA12728A

    Article  CAS  Google Scholar 

  12. Aravindan, V., Lee, Y.-S., and Madhavi, S., Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes, Adv. Energy Mater., 2015, vol. 5, no. 13, paper 1402225. https://doi.org/10.1002/aenm.201402225

  13. Sandhya, C.P., John, B., and Gouri, C., Lithium titanate as anode material for lithium-ion cells: a review, Ionics, 2014, vol. 20, no. 5, pp. 601–620. https://doi.org/10.1007/s11581-014-1113-4

    Article  CAS  Google Scholar 

  14. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, pp. 826–852.

    Article  CAS  Google Scholar 

  15. Stenina, I.A., Sobolev, A.N., Yaroslavtsev, S.A., Rusakov, V.S., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Influence of iron doping on structure and electrochemical properties of Li4Ti5O12, Electrochim. Acta, 2016, vol. 219, pp. 524–530. https://doi.org/10.1016/j.electacta.2016.10.034

    Article  CAS  Google Scholar 

  16. Kulova, T.L., Kreshchenova, Yu.M., Kuz’mina, A.A., Skundin, A.M., Stenina, I.A., and Yaroslavtsev, A.B., New high-capacity anode materials based on gallium-doped lithium titanate, Mendeleev Commun., 2016, vol. 26, no. 3, pp. 238–239. https://doi.org/10.1016/j.mencom.2016.05.005

    Article  CAS  Google Scholar 

  17. Qian, D., Gu, Y., Chen, Y., Liu, H., Wang, J., and Zhou, H., Ultra-high specific capacity of Cr3+-doped Li4Ti5O12 at 1.55 V as anode material for lithium-ion batteries, Mater. Lett., 2019, vol. 238, pp. 102–106. https://doi.org/10.1016/j.matlet.2018.11.163

    Article  CAS  Google Scholar 

  18. Guo, M., Wang, S., Ding, L.-X., Huang, C., and Wang, H., Tantalum-doped lithium titanate with enhanced performance for lithium-ion batteries, J. Power Sources, 2015, vol. 283, pp. 372–380. https://doi.org/10.1016/j.jpowsour.2015.02.154

    Article  CAS  Google Scholar 

  19. Cho, H., Son, H., Kim, D., Lee, M., Boateng, S., Han, H., Kim, K.M., Kim, S., Choi, H., Song, T., and Lee, K.H., Impact of Mg-doping site control in the performance of Li4Ti5O12 Li-ion battery anode: first-principles predictions and experimental verifications, J. Phys. Chem. C, 2017, vol. 121, pp. 14994–15001. https://doi.org/10.1021/acs.jpcc.7b01475

    Article  CAS  Google Scholar 

  20. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Carbon composites as anode materials for lithium-ion batteries, Rev. Adv. Mater. Sci., 2017, vol. 49, pp. 140–149.

    CAS  Google Scholar 

  21. Cheng, Q., Tang, S., Liang, J., Zhao, J., Lan, Q., Liu, C., and Cao, Y.-C., High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery, Results Phys., 2017, vol. 7, pp. 810–812. https://doi.org/10.1016/j.rinp.2017.01.040

    Article  Google Scholar 

  22. Park, J.-H., Kang, S.-W., Kwon, T.-S., and Park, H.S., Spray-drying assisted synthesis of a Li4Ti5O12/C composite for high rate performance lithium ion batteries, Ceram. Int., 2018, vol. 44, pp. 2683–2690. https://doi.org/10.1016/j.ceramint.2017.10.217

    Article  CAS  Google Scholar 

  23. Mu, D., Chen, Y., Wu, B., Huang, R., Jiang, Y., Li, L., and Wu, F., Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries, J. Alloys Compd., 2016, vol. 671, pp. 157–163. https://doi.org/10.1016/j.jallcom.2016.02.095

    Article  CAS  Google Scholar 

  24. Sha, Y., Xu, X., Li, L., Cai, R., and Shao, Z., Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries, J. Power Sources, 2016, vol. 314, pp. 18–27. https://doi.org/10.1016/j.jpowsour.2016.02.084

    Article  CAS  Google Scholar 

  25. Li, D., Zhang, X., Miao, X., Liu, Y., Chen, S., Chen, Y., Wang, W., and Zhang, Y., Solid-state synthesized Li4Ti5O12 for ultrafast lithium ion storage enabled by carbon-coating induced particle size tailoring, J. Alloys Compd., 2019, vol. 797, no. 15, pp. 1258–1267. https://doi.org/10.1016/j.jallcom.2019.05.164

    Article  CAS  Google Scholar 

  26. Yao, N.Y., Liu, H.K., Liang, X., Sun, Y., Feng, X.Y., Chen, C.H., and Xiang, H.F., Li4Ti5O12 nanosheets embedded in three-dimensional amorphous carbon for superior-rate battery applications, J. Alloys Compd., 2019, vol. 771, pp. 755–761. https://doi.org/10.1016/j.jallcom.2018.08.001

    Article  CAS  Google Scholar 

  27. Guo, X., Xiang, H.F., Zhou, T.P., Ju, X.K., and Wu, Y.C., Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance, Electrochim. Acta, 2014, vol. 130, pp. 470–476. https://doi.org/10.1016/j.electacta.2014.02.139

    Article  CAS  Google Scholar 

  28. Lim, J., Choi, E., Mathew, V., Kim, D., Ahn, D., Gim, J., Kang, S.-H., and Kim, J., Enhanced high-rate performance of Li4Ti5O12 nanoparticles for rechargeable Li-ion batteries, J. Electrochem. Soc., 2011, vol. 158, no. 3, pp. A275–A280. https://doi.org/10.1149/1.3527983

    Article  CAS  Google Scholar 

  29. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., High grain boundary density Li4Ti5O12/ anatase-TiO2 nanocomposites as anode material for Li-ion batteries, Mater. Res. Bull., 2016, vol. 75, pp. 178–184. https://doi.org/10.1016/j.materresbull.2015.11.050

    Article  CAS  Google Scholar 

  30. Zhao, S., Ka, O., Xian, X., Sun, L., and Wang, J., Effect of primary crystallite size on the high-rate performance of Li4Ti5O12 microspheres, Electrochim. Acta, 2016, vol. 206, pp. 17–25. https://doi.org/10.1016/j.electacta.2016.04.132

    Article  CAS  Google Scholar 

  31. Sandhya, C.P., John, B., and Gouri, C., Surfactant-assisted sol–gel route to lithium titanate and its electrochemical properties, J. Alloys Compd., 2016, vol. 655, pp. 238–243. https://doi.org/10.1016/j.jallcom.2015.09.174

    Article  CAS  Google Scholar 

  32. Chauque, S., Oliva, F.Y., Visintin, A., Barraco, D., Leiva, E.P.M., and Camara, O.R., Lithium titanate as anode material for lithium ion batteries: synthesis, post-treatment and its electrochemical response, J. Electroanal. Chem., 2017, vol. 799, pp. 142–155. https://doi.org/10.1016/j.jelechem.2017.05.052

    Article  CAS  Google Scholar 

  33. Stenina, I.A., Il’in, A.B., and Yaroslavtsev, A.B., Synthesis and ionic conductivity of Li4Ti5O12, Inorg. Mater., 2015, vol. 51, pp. 62–67. https://doi.org/10.1134/S0020168515010185

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The SEM measurements were performed using shared experimental facilities supported by IGIC RAS state assignment.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-08-00769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Sobolev, A.N., Kuz’mina, A.A. et al. Influence of Mechanical Processing and the Procedure Used to Introduce a Carbon Material on the Electrochemical Properties of Li4Ti5O12/C Composites. Inorg Mater 56, 1079–1086 (2020). https://doi.org/10.1134/S0020168520090150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520090150

Keywords:

Navigation