Skip to main content
Log in

Synthesis, Structure, and Properties of Zirconia-Modified Aluminosilicate Glass-Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

Strontium aluminosilicate glass-ceramics modified with zirconia additions in the presence of yttria as a stabilizing oxide and without it have been prepared by a sol–gel process. Increasing the zirconia content from 5 to 15 wt % has been shown to reduce the gelation time of the starting solutions, lower the gel crystallization onset temperature, activate the glass-ceramic sintering process, and increase the critical stress intensity factor (KIc) of the glass-ceramics by more than a factor of 2. The present results confirm that the increase in KIc on the addition of ZrO2 is due to transformation toughening. At the same time, the addition of yttria as a stabilizing oxide has been shown to hinder the martensitic transformation of tetragonal ZrO2 into the monoclinic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Beall, G.H., Refractory glass-ceramics based on alkaline earth aluminosilicates, J. Eur. Ceram. Soc., 2009, no. 29, pp. 1211–1219.

  2. Sung, Y.M. and Kim, S., Sintering and crystallization of off-stoichiometric SrO ⋅ Al2O3 ⋅ 2SiO2 glasses, J. Mater. Sci., 2000, no. 35, pp. 4293–4299.

  3. Chainikova A.S., Voropaeva M.V., Alekseeva L.A., Orlova L.A., and Samsonov V.I., Current status of projects in the field of radome cordierite glass-ceramics, Aviats. Mater. Technol., 2014, no. S6, pp. 45–51. https://doi.org/10.18577/2071-9140-2014-0-s6-45-51

  4. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., Solntsev, S.S., and Sevast’yanov, V.G., Glass and ceramics based high-temperature composite materials for use in aviation technology, Glass Ceram., 2012, vol. 69, nos. 3–4, pp. 109–112.

    Article  CAS  Google Scholar 

  5. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Promising high-temperature ceramic composite materials, Ross. Khim. Zh., 2010, vol. 54, no. 1, pp. 20–24.

    CAS  Google Scholar 

  6. Kablov, E.N., Innovative solutions at the All-Russia Research Institute of Aviation Materials (Russian Federation State Scientific Center) for implementation of “The Strategic Directions in the Development of Materials and Materials Processing Technologies until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33. https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  7. Chainikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., and Solntsev, S.St., Dispersion-hardened composites based on glass/glass-ceramic matrices: properties and application areas, Aviats. Mater. Technol., 2014, no. 3, pp. 45–54 . https://doi.org/10.18577/2071-9140-2014-0-3-45-54

  8. Ye, F., Liu, L., Zhang, J., and Meng, Q., Synthesis of 30 wt % BAS/Si3N4 composite by spark plasma sintering, Compos. Sci. Technol., 2008, no. 68, pp. 1073–1079.

  9. Chainikova, A.S., Grashchenkov, D.V., Vaganova, M.L., and Modin S.Yu., Application of spark plasma sintering in the synthesis of composite materials based on silicon nitride-reinforced aluminosilicate glass-ceramics, Kompoz.Nanostrukt., 2016, vol. 8, no. 3, pp. 174–186.

    CAS  Google Scholar 

  10. Ye, F., Liu, L., Zhang, J., Iwasa, M., and Su, C.-L., Synthesis of silicon nitride–barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering, Compos. Sci. Technol., 2005, no. 65, pp. 2233–2239.

  11. Hannink, R.H.J., Kelly, P.M., and Muddle, B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 2000, vol. 83, pp. 461–487.

    Article  CAS  Google Scholar 

  12. Evans, A.G. and Cannon, R.M., Toughening of brittle solids by martensitic transformation. Overview no. 48, Acta Metall., 1986, vol. 34, no. 5, pp. 761–800.

    Article  CAS  Google Scholar 

  13. Sridharan, S. and Tomozawa, M., Toughening of glass-ceramics by both transformable and transformed zirconia, J. Non-Cryst. Solids, 1995, vol. 182, pp. 262–270.

    Article  Google Scholar 

  14. Grashchenkov D.V., Vaganova M.L., Shchegoleva N.E., Chainikova A.S., and Lebedeva, Yu.E., High-temperature glass-ceramic barium aluminosilicate material prepared by a sol–gel process and related composite materials, Aviats. Mater. Technol., 2017, no. S, pp. 290–305. https://doi.org/10.18577/2071-9140-2017-0-S-290-305

  15. Rietveld, H.M., The Rietveld method: a retrospection, Z. Kristallogr., 2010, vol. 225, pp. 545–547.

    Article  CAS  Google Scholar 

  16. Niihara, K., Marshall, M., and Hasselmann, D.P.H., Evolution of KIc brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1982, vol. 1, no. 1, pp. 13–16.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 18-73-00325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Chainikova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Chainikova, A.S., Shchegoleva, N.E. et al. Synthesis, Structure, and Properties of Zirconia-Modified Aluminosilicate Glass-Ceramics. Inorg Mater 56, 1065–1071 (2020). https://doi.org/10.1134/S0020168520100064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520100064

Keywords:

Navigation