Skip to main content
Log in

Photoluminescence of Europium-Containing Materials Based on Fluorinated Yttria and Alumina

  • Published:
Inorganic Materials Aims and scope

Abstract

Luminescent materials have been prepared via thermal decomposition of a mixture of yttrium and europium trifluoroacetates and aluminum nitrate isolated from ethyl acetate, a low-polarity solvent. The influence of the composition of precursors and synthesis temperature on the composition, structure, and luminescence of the materials has been studied by vibrational and electronic spectroscopies, X-ray diffraction, and scanning electron microscopy. The results demonstrate that the major phases in the synthesized materials are (Y1 – хEux)F3, (Y1 – хEux)OF, and the (Y1 – хEux)2O3 ⋅ Al2O3 mixed oxide in various proportions. The percentage of fluorine atoms in the composition of europium-containing activator centers and the presence of aluminum ions influence the relative intensity of luminescence excitation and luminescence bands, the multiplicity of the 5D07F1,2,4 electron transitions (increasing it to the maximum value), the splitting energy of the strongest components of the 5D07F2 electron transition, and the efficiency of conversion of phonon energy in the oxide host to luminescence. The present results make it possible to synthesize materials with predictable spectral characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ikesue, A., Aung, Y.L., Taira, T., et al., Progress in ceramic lasers, Annu. Rev. Mater. Res., 2006, vol. 36, pp. 397–429. https://doi.org/10.1146/annurev.matsci.36.011205.152926

    Article  CAS  Google Scholar 

  2. Maciel Glauco, S., Rakov, N., Zanon, R.A. de S., et al., Red photoluminescence in NdAlO3 crystalline ceramic powders prepared by combustion synthesis, Chem. Phys. Lett., 2008, vol. 465, pp. 258–260. https://doi.org/10.1016/j.cplett.2008.09.062

    Article  CAS  Google Scholar 

  3. Ivanov, M.G., Kopylov, Yu.L., Kravchenko, V.B., et al., YAG and Y2O3 laser ceramics from nonagglomerated nanopowders, Inorg. Mater., 2014, vol. 50, no. 9, pp. 951–959. https://doi.org/10.1134/S0020168514090040

    Article  CAS  Google Scholar 

  4. Cabello-Guzmán, G., González, D., Caro-Díaz, C., et al., Preliminary evaluation of the up-conversion emission of Y2O3:Er–Yb thin films prepared by a solid state photochemical deposition method, J. Lumin., 2018, vol. 204, pp. 401–409. https://doi.org/10.1016/j.jlumin.2018.08.034

    Article  CAS  Google Scholar 

  5. Yang, T., Xiang, Q., Feng, L., et al., Yttrium-based metal-organic frameworks: controllable synthesis, growth mechanism and the phase transformation to Y2O3:Eu3+ phosphors, J. Lumin., 2019, vol. 214, paper 116567. https://doi.org/10.1016/j.jlumin.2019.116567

  6. Yin, D., Wang, J., Tang, D., et al., Fabrication and microstructural characterizations of lasing grade Nd:Y2O3 ceramics, J. Am. Ceram. Soc., 2019, vol. 102, no. 12, pp. 7462–7468. https://doi.org/10.1111/jace.16671

  7. Pavasaryte, L., Katelnikovas, A., Momot, A., et al., Eu3+-doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: synthesis, characterization and investigation of structural and luminescence properties, J. Lumin., 2019, vol. 212, pp. 14–22. https://doi.org/10.1016/j.jlumin.2019.04.005

    Article  CAS  Google Scholar 

  8. Boyarintseva, Y., Neicheva, S., Zhmurin, P., et al., Optical study of Y3 –xGdxAl5O12:Ce crystals grown from the melt, Opt. Mater., 2019, vol. 96, paper 109283. https://doi.org/10.1016/j.optmat.2019.109283

  9. Jiang, N., Zhao, Y., Ge, L., et al., Fabrication and kW-level MOPA laser output of planar waveguide YAG/Yb:YAG/YAG ceramic slab, J. Am. Ceram. Soc., 2019, vol. 102, no. 4, pp. 1758–1767. https://doi.org/10.1111/jace.16040

    Article  CAS  Google Scholar 

  10. Jusza, A., Piramidowicz, R., Lipińska, L., et al., Short wavelength emission properties of Tm3+ and Tm3+ + Yb3+ doped LaAlO3 nanocrystals and polymer composites, Opt. Mater., 2019, vol. 97, paper 109365. https://doi.org/10.1016/j.optmat.2019.109365

  11. Ćirć, A. and Stojadinović, S., Structural and photoluminescence properties of Y2O3 and Y2O3:Ln3+ (Ln = Eu, Er, Ho) films synthesized by plasma electrolytic oxidation of yttrium substrate, J. Lumin., 2020, vol. 217, paper 116762. https://doi.org/10.1016/j.jlumin.2019.116762

  12. Panahibakhsh, S., Bahramian, R., Jaberi, M., and Jelvani, S., Control of defects and their luminescence properties in Nd:YAG crystals by laser irradiation, J. Lumin., 2020, vol. 218, paper 116813. https://doi.org/10.1016/j.jlumin.2019.116813

  13. Back, M., Massari, A., Boffelli, M., et al., Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process, J. Nanopart. Res., 2012, vol. 14, paper 792. https://doi.org/10.1007/s11051-012-0792-x

  14. Pomelova, T.A., Bakovets, V.V., Korol’kov, I.V., et al., On the abnormal efficiency of the luminescence of submicron-sized phosphor Y2O3:Eu3+, Phys. Solid State, 2014, vol. 56, no. 12, pp. 2496–2506. https://doi.org/10.1134/S1063783414120269

    Article  CAS  Google Scholar 

  15. Antic, B., Rogan, J., Kremenovic, A., et al., Optimization of photoluminescence of Y2O3:Eu and Gd2O3:Eu phosphors synthesized by thermolysis of 2,4-pentanedione complexes, Nanotechnology, 2010, vol. 21, no. 24, paper 245702. https://doi.org/10.1088/0957-4484/21/24/245702

  16. Smagin, V.P. and Khudyakov, A.P., Effect of synthesis conditions on the luminescence of europium-containing materials based on yttria and yttrium oxyfluorides, Inorg. Mater., 2019, vol. 55, no. 1, pp. 64–76. https://doi.org/10.1134/S0002337X19010147

    Article  CAS  Google Scholar 

  17. Tian, Y., Chen, B., Hua, R., et al., Fabrication and luminescent enhancement of Eu3+-doped Y2O3@YOF core–shell nanocrystals, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 11, pp. 9631–9635. https://doi.org/10.1166/jnn.2011.5312

    Article  CAS  PubMed  Google Scholar 

  18. Ukleina, I.Yu., Yttrium and lanthanide oxyfluorides: synthesis, luminescence, and optical properties, Cand. Sci. (Chem.) Dissertation, Stavropol: Stavropol State Univ., 2005.

  19. Kuznetsov, S.V., Osiko, V.V., Tkachenko, E.A., and Fedorov, P.P., Inorganic nanofluorides and related nanocomposites, Russ. Chem. Rev., 2006, vol. 75, no. 12, pp. 1056–1082. https://doi.org/10.1070/RC2006v075n12ABEH003637

    Article  CAS  Google Scholar 

  20. Rakov, N. and Maciel, G.S., Comparative study of Er3+ and Tm3+ co-doped YOF and Y2O3 powders as red spectrally pure upconverters, Opt. Mater., 2013, no. 35, pp. 2372–2375. https://doi.org/10.1016/j.optmat.2013.06.037

  21. Kolomiets, T.Yu., Tel’nova, G.B., Ashmarin, A.A., et al., Synthesis and sintering of submicron Nd:YAG particles prepared from carbonate precursors, Inorg. Mater., 2017, vol. 53, no. 8, pp. 874–882. https://doi.org/10.1134/S0020168517080076

    Article  CAS  Google Scholar 

  22. Zhang, J., Zhang, Z., Tang, Z., et al., Luminescent properties of Y2O3:Eu synthesized by sol–gel processing, J. Mater. Process. Technol., 2002, vol. 121, nos. 2–3, pp. 265–268. https://doi.org/10.1016/S0924-0136(01)01263-8

    Article  CAS  Google Scholar 

  23. Chong, M.K., Pita, K., and Kam, C.H., Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing, J. Phys. Chem. Solids, 2005, vol. 66, no. 1, pp. 213–217. https://doi.org/10.1016/j.jpcs.2004.09.016

    Article  CAS  Google Scholar 

  24. Cho, J.Y., Ko, K.Y., and Do, Y.R., Optical properties of sol–gel derived Y2O3:Eu3+ thin-film phosphors for display applications, Thin Solid Films, 2007, vol. 515, nos. 7–8, pp. 3373–3379. https://doi.org/10.1016/j.tsf.2006.09.029

    Article  CAS  Google Scholar 

  25. Garskaite, E., Lindgren, M., Einarsrud, M.-A., and Grande, T., Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesized by an aqueous sol–gel technique, J. Eur. Ceram. Soc., 2010, vol. 30, no. 7, pp. 1707–1715. https://doi.org/10.1016/j.jeurceramsoc.2010.01.001

    Article  CAS  Google Scholar 

  26. Mikhailov, M.D., Semencha, A.V., Kolesnikov, I.E., and Man’shina, A.A., Structure and luminescence properties YAG:Eu nanoparticles, Sovrem. Probl. Nauki Obraz., 2012, no. 4, pp. 335–343.

  27. Mamonova, D.V., Kolesnikov, I.E., Manshina, A.A., et al., Modified Pechini method for the synthesis of weakly-agglomerated nanocrystalline yttrium aluminum garnet (YAG) powders, Mater. Chem. Phys., 2017, vol. 189, pp. 245–251. https://doi.org/10.1016/j.matchemphys.2016.12.025

    Article  CAS  Google Scholar 

  28. Anh, T.K., Benalloul, P., Barthou, Ch., et al., Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+, and Yb3+ ions, J. Nanomater., 2007, vol. 2007, paper 48247. https://doi.org/10.1155/2007/48247

  29. Kopylov, Yu.L., Kravchenko, V.B., Komarov, A.A., et al., Nd:Y2O3 nanopowders for laser ceramics, Opt. Mater., 2007, vol. 29, no. 10, pp. 1236–1239. https://doi.org/10.1016/j.optmat.2006.06.018

    Article  CAS  Google Scholar 

  30. Wen, T., Luo, W., Wang, Y., et al., Multicolour and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals, J. Mater. Chem. C, 2013, vol. 1, no. 10, pp. 1995–2001. https://doi.org/10.1039/c3tc00642e

    Article  CAS  Google Scholar 

  31. Rakov, N., Guimarãaes, R.B., Lozano, B.W., and Maciel, G.S., Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis, J. Appl. Phys., 2013, vol. 114, paper 043517. https://doi.org/10.1063/1.4816623

  32. Smagin, V.P., Eremina, N.S., and Michueva, Z.V., Synthesis and luminescence spectra of (Y2O3–YOF):Ln(III) composites, Inorg. Mater., 2017, vol. 53, no. 8, pp. 838–846. https://doi.org/10.1134/S0020168517080167

    Article  CAS  Google Scholar 

  33. Smagin, V.P., Khudyakov, A.P., and Eremina, N.S., Synthesis and luminescence of europium-containing compositions based on yttrium oxide and oxyfluorides, Russ. J. Inorg. Chem., 2018, vol. 63, no. 11, pp. 1427–1435. https://doi.org/10.1134/S0036023618110190

    Article  CAS  Google Scholar 

  34. Khudyakov, A.P., Smagin, V.P., Strucheva, N.E., and Zatonskaya, L.V., Nonaqueous synthesis and luminescence of (YF3–Y2O3):Eu3+ composites, Polzunovsk. Vestn., 2019, no. 2, pp. 106–112. https://doi.org/10.25712/ASTU.2072-8921.2019.02.021

  35. Belyi, V.I., Rastorguev, A.A., Remova, A.A., et al., Isomerism of the terbium(III) trifluoroacetate trihydrate dimer, Zh. Strukt. Khim., 2002, vol. 43, no. 4, pp. 634–641.

    Google Scholar 

  36. Alarćon-Flores, G., García-Hipólito, M., Aguilar-Frutis, M., et al., Synthesis and fabrication of Y2O3:Tb3+ and Y2O3:Eu3+ thin films for electroluminescent applications: optical and structural characteristics, Mater. Chem. Phys., 2015, vols. 149–150, pp. 34–42. https://doi.org/https://doi.org/10.1016/j.matchemphys.2014.09.020

    Article  Google Scholar 

  37. Smagin, V.P., Khudyakov, A.P., and Biryukov, A.A., Luminescence of Eu3+ ions in a matrix of a fluorinated yttrium–aluminum composition, Phys. Solid State, 2020, vol. 62, no. 2, pp. 325–331. https://doi.org/10.1134/S1063783420020195

    Article  CAS  Google Scholar 

  38. Manashirov, O.Ya., Zvereva, E.M., and Vorob’ev, V.A., A comparative study of various classes of Yb3+-activated phosphors under IR excitation, Vestn. Yuzhnogo Nauchn. Tsentra Ross. Akad. Nauk, 2012, vol. 8, no. 4, pp. 38–49.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Biryukov and S.A. Kuznetsova (Tomsk State University, Tomsk) for measuring the luminescence spectra and X-ray diffraction patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagin, V.P., Khudyakov, A.P. Photoluminescence of Europium-Containing Materials Based on Fluorinated Yttria and Alumina. Inorg Mater 56, 1039–1049 (2020). https://doi.org/10.1134/S0020168520100143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520100143

Keywords:

Navigation