Skip to main content

Advertisement

Log in

RHDE models in FRW Universe with two IR cut-offs with redshift parametrization

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we have researched the cosmic expansion phenomenon in flat FRW Universe through the interaction of the recently proposed Rènyi holographic dark energy (RHDE). For this reason, we assumed Hubble (H) and Granda–Oliveros (GO) horizons as IR cut-off in the framework of f(RT) gravity. With this choice for IR cut-off, we can obtain some important cosmological quantities such as the equation of state \(\omega _{T}\), energy density \(\rho _{T}\), density parameter \(\Omega _{T}\), and pressure \(p_{T}\), which are the function of the redshift z. It is observed that in both IR cut-offs the EoS parameter displays quintom-like behaviour for three different values of \(\delta \). Here, we plot these parameters versus redshift z and discuss the consistency of the recent findings. Next, we explore the \(\omega _{T}\)\(\omega _{T}^{\prime }\) plane and the stability analysis of the dark energy model by a perturbation method. Our findings demonstrate that the Universe is an accelerating model of rapid growth that is explained by quintom like behaviour. Hence, the feasibility of the RHDE model with Hubble and GO cut-off is supported by our model. The results indicate that the IR cut-offs play a significant role in the understanding of the dynamics of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. P.A. Bernardis et al., Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  3. M. Colless et al., Mon. Not. R. Astron. Soc. 328, 1039 (2001)

    Article  ADS  Google Scholar 

  4. S. Cole et al., Mon. Not. R. Astron. Soc. 362, 505 (2005)

    Article  ADS  Google Scholar 

  5. V. Springel, C.S. Frenk, Nature 440, 1137 (2006)

    Article  ADS  Google Scholar 

  6. S. Ade Hanany et al., Astrophys. J. Lett. 545, L5 (2000)

    Article  ADS  Google Scholar 

  7. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  8. M. Roos (Wiley, Chichester, 2003)

  9. S. Nojiri, S.D. Odintsov, Phys. Lett. B 639, 144 (2006)

    Article  ADS  Google Scholar 

  10. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  11. M. Malekjani, T. Naderi, F. Pace, MNRAS 453, 4148 (2015)

    Article  ADS  Google Scholar 

  12. M.R. Setare, Phys. Lett. B 644, 99 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  14. V. Pasquier, U. Moschella, A.Y. Kamenshchick, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  15. K. Kleidis, N.K. Spyrou, Astron. Astrographys. 576, A23 (2015)

    Article  ADS  Google Scholar 

  16. K. Kleidis, N.K. Spyrou, Entropy 18, 94 (2016)

    Article  ADS  Google Scholar 

  17. S. Nojiri, S.D. Odintsov, Phys. Lett. B 562, 147 (2003)

    Article  ADS  Google Scholar 

  18. S. Weinberg, Rev. Mod. Phys. 61, 1 (1998)

    Article  ADS  Google Scholar 

  19. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  20. M.R. Setare, Chin. Phys. Lett. 26, 029501 (2009)

    Article  ADS  Google Scholar 

  21. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  22. M.R. Setare, E.N. Saridakis, Phys. Lett. B 671, 331 (2009)

    Article  ADS  Google Scholar 

  23. M. Jamil, E.N. Saridakis, M.R. Setare, Phys. Lett. 679, 172 (2009)

    Article  Google Scholar 

  24. J. Lu, E.N. Saridakis, M.R. Setare, L. Xu, J. Cosmol. Astropart. Phys. 031, 26 (2010)

    Google Scholar 

  25. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Bousso, JHEP 004, 9907 (1999)

    Google Scholar 

  27. A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1994)

    Article  ADS  Google Scholar 

  29. D.R.K. Reddy et al., Astrophys. Space Sci. 361, 356 (2016)

    Article  ADS  Google Scholar 

  30. Y. Aditya, D.R.K. Reddy, Eur. Phys. J. C 78, 619 (2018)

    Article  ADS  Google Scholar 

  31. V.U.M. Rao et al., Results Phys. 10, 469 (2018)

    Article  ADS  Google Scholar 

  32. M.V. Santhi et al., Can. J. Phys. 95, 381 (2017)

    Article  ADS  Google Scholar 

  33. K.D. Naidu et al., Eur. Phys. J. Plus 133, 303 (2018)

    Article  Google Scholar 

  34. U.K. Sharma, V.C. Dubey, arXiv:2001.02368 (2020)

  35. V.C. Dubey, A.K. Mishra, U.K. Sharma, arXiv:2003.07883 (2020)

  36. U.Y.D. Prasanthi, Y. Aditya, Results Phys. 17, 103101 (2020)

    Article  Google Scholar 

  37. T. Golanbari, K. Saaidi, P. Karimi, arXiv:2002.04097 [astro-ph.CO] (2020)

  38. S. Qolibiklooa, A. Ghodsib, Eur. Phys. J. C 79, 406 (2019)

    Article  ADS  Google Scholar 

  39. I.A. Akhlaghi et al., MNRAS 477, 3659 (2018)

    Article  ADS  Google Scholar 

  40. S. Ghaffari, New Astron. 67, 76 (2019)

    Article  ADS  Google Scholar 

  41. H. Moradpour et al., Eur. Phys. J. C 78, 829 (2018)

    Article  ADS  Google Scholar 

  42. A.S. Jahromi et al., Phys. Lett. B 21, 780 (2018)

    MathSciNet  Google Scholar 

  43. M. Tavayef, A. Sheykhi, K. Bamba, H. Moradpour, Phys. Lett. B 781, 195 (2018)

    Article  ADS  Google Scholar 

  44. C. Tsallis, L.J.L. Cirto, Eur. Phys. J. C 73, 2487 (2013)

    Article  ADS  Google Scholar 

  45. M. Younas et al., Adv. High Energy Phys. 2019, 1287932 (2019)

    Article  Google Scholar 

  46. P. Horava, D. Minic, Phys. Rev. Lett. 85, 1610 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Thomas, Phys. Rev. Lett. 89, 081301 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  48. L.N. Granda, A. Oliveros, Phy. Lett. B 671, 199 (2009)

    Article  ADS  Google Scholar 

  49. A. Jawad, K. Bamba, M. Younas, S. Qummer, S. Rani, Symmetry 10, 635 (2018)

    Article  Google Scholar 

  50. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  51. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  52. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  53. M. Li, X.D. Li, S. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 2009, 036 (2009)

  54. M. Li, X.D. Li,S. Wang, Y. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 2009, 014 (2009)

  55. B. Guberina, R. Horvat, H. Nikolic, J. Cosmol. Astropart. Phys. 2007, 012 (2007)

  56. S. Wang, Y. Wang, M. Li, Phys. Rep. 1, 696 (2017)

    Google Scholar 

  57. B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Rep. Prog. Phys. 79, 096901 (2016)

    Article  ADS  Google Scholar 

  58. K. karami, A. Abdolmaleki, N. Sahraei, S. Ghaffari, JHEP 150, 1108 (2011)

    Google Scholar 

  59. C. Tsallis, Entropy 13, 1765 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  60. A. Rènyi, Probability Theory (North-Holland, Amsterdam, 1970)

  61. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  62. S. Nojiri, S.D. Odintsov, E.N. Saridakis, Eur. Phys. J. C 79, 242 (2019)

    Article  ADS  Google Scholar 

  63. A. Majhi, Phys. Lett. B 32, 772 (2017)

    Google Scholar 

  64. A.S. Jahromi et al., Phys. Lett. B 780, 21 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  65. N. Komatsu, Eur. Phys. J. C 77, 229 (2017)

    Article  ADS  Google Scholar 

  66. H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Phys. Rev. D 96, 123504 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  67. H. Moradpour, A. Sheykhi, C. Corda, I.G. Salako, Phys. Lett. B 783, 82 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  68. H. Moradpour, Int. J. Theor. Phys. 55, 4176 (2016)

    Article  MathSciNet  Google Scholar 

  69. H. Moradpour et al., Eur. Phys. J. C 78, 829 (2018)

    Article  ADS  Google Scholar 

  70. E.M. Barboza, R.C. Nunes, E.M.C. Abreu, J.A. Neto, Phys. A Stat. Mech. Appl. 436, 301 (2015)

    Article  Google Scholar 

  71. V.G. Czinner, H. Iguchi, Phys. Lett. B 752, 306 (2016)

    Article  ADS  Google Scholar 

  72. T. Harko, Phys. Rev. D 81, 044021 (2010)

    Article  ADS  Google Scholar 

  73. S. Ram, S.K. Singh, M.K. Verma, Phys. Astron. Int. J 4, 330 (2018)

    Article  Google Scholar 

  74. D.D. Pawar, R.V. Mapari, P.K. Agarwal, J. Astrophys. Astron. 40, 13 (2019)

    Article  ADS  Google Scholar 

  75. P.K. Sahoo, P. Sahoo, B.K. Bishi, Int. J. Geom. Method Mod. Phys. 7, 17 (2018)

    Google Scholar 

  76. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 1998)

    MATH  Google Scholar 

  77. N.J. Poplawski, arXiv:gr-qc/0608031

  78. V. Faraoni, Cosmology in Scalar-Tensor Theory (Kluwer Academis Publishers, London, 2004)

  79. S. Mizuno, S.J. Lee, E.J. Copeland, Phys. Rev. D 70, 043525 (2004) astro-ph/0405490

  80. E.J. Copeland, M.R. Garousi, M. Sami, S. Tsujikawa, Phys. Rev. D 71, 043003 (2005)

    Article  ADS  Google Scholar 

  81. R.R. Caldwell, E.V. Linder, Phys. Rev. Lett. 95, 141301–141304 (2005)

  82. S. Bhattacharjee, arxiv:2006.04339v1 [gr-qc] (2020)

  83. L.K. Sharma, B.K. Singh, A.K. Yadav, Int. J. Geom. Method Mod. Phys. 1, 2050111 (2020)

    Article  Google Scholar 

  84. C.M. Chen, W.F. Kao, Phys. Rev. D 64, 124019 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are heartily grateful to the anonymous referee for his constructive comments which improved the paper in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Pradhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Bhardwaj, V.K. & Pradhan, A. RHDE models in FRW Universe with two IR cut-offs with redshift parametrization. Eur. Phys. J. Plus 135, 831 (2020). https://doi.org/10.1140/epjp/s13360-020-00850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00850-6

Navigation