Skip to main content
Log in

Red AIE conjugated polyelectrolytes for long-term tracing and image-guided photodynamic therapy of tumors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Robust photosensitizers with strong red/NIR fluorescence, efficient reactive oxygen species (ROS) generation and high photostability are highly desired for photodynamic therapy (PDT). Herein, three novel red conjugated polyelectrolytes (CPEs) with tetraphenylethene and 2,1,3-benzothiadiazole on the main chains and triphenylphosphonium on the side chains are developed. These CPEs display apparent aggregation-induced emission feature and high fluorescence quantum yields in the aggregated state. They can target lysosome in HeLa cells for fluorescence bioimaging. By virtue of the good retention effect and high photostability, these CPEs show ultralong-term tracing performance of subcutaneous tumors, and the tumor site can still be visualized for 20 days after injection. Owing to their good biocompatibility and strong ROS generation ability, the image-guided PDT based on these CPEs can effectively inhibit the growth of subcutaneous tumor and significantly prolong the survival of tumor bearing mice. The H&E and IHC staining reveal that the PDT of these CPEs depress the proliferation of tumor cells, and promote apoptosis and necrosis process. These new CPEs may be employed both as fluorescent probes for in vitro and in vivo long-term tracing and as photosensitizers for image-guided PDT of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu C, Kwok RTK, Lam JWY, Tang BZ. ACS Appl Bio Mater, 2018, 1: 1768–1786

    CAS  Google Scholar 

  2. Ntziachristos V. Annu Rev Biomed Eng, 2006, 8: 1–33

    CAS  PubMed  Google Scholar 

  3. He S, Song J, Qu J, Cheng Z. Chem Soc Rev, 2018, 47: 4258–4278

    CAS  PubMed  Google Scholar 

  4. Wang D, Tang BZ. Acc Chem Res, 2019, 52: 2559–2570

    CAS  PubMed  Google Scholar 

  5. Shcherbakova DM, Baloban M, Emelyanov AV, Brenowitz M, Guo P, Verkhusha VV. Nat Commun, 2016, 7: 12405

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaberniuk AA, Shemetov AA, Verkhusha VV. Nat Methods, 2016, 13: 591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Xia Q, Liu R, Qu J. J Mater Chem B, 2018, 6: 2340–2346

    CAS  PubMed  Google Scholar 

  8. Zheng B, Wang H, Pan H, Liang C, Ji W, Zhao L, Chen H, Gong X, Wu X, Chang J. ACS Nano, 2017, 11: 11898–11907

    CAS  PubMed  Google Scholar 

  9. Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, Xue D, Lam JWY, Li G, Qian J, Tang BZ. ACS Nano, 2018, 12: 11282–11293

    CAS  PubMed  Google Scholar 

  10. Xiao W, Ruan S, Yu W, Wang R, Hu C, Liu R, Gao H. Mol Pharm, 2017, 14: 3489–3498

    CAS  PubMed  Google Scholar 

  11. Zhu CN, Chen G, Tian ZQ, Wang W, Zhong WQ, Li Z, Zhang ZL, Pang DW. Small, 2017, 13: 1602309

    Google Scholar 

  12. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. Nat Nanotech, 2009, 4: 773–780

    CAS  Google Scholar 

  13. Venkatesh V, Shukla A, Sivakumar S, Verma S. ACS Appl Mater Interfaces, 2014, 6: 2185–2191

    CAS  PubMed  Google Scholar 

  14. Ji X, Peng F, Zhong Y, Su Y, Jiang X, Song C, Yang L, Chu B, Lee ST, He Y. Adv Mater, 2015, 27: 1029–1034

    CAS  PubMed  Google Scholar 

  15. Wu C, Bull B, Szymanski C, Christensen K, McNeill J. ACS Nano, 2008, 2: 2415–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat Methods, 2008, 5: 763–775

    CAS  PubMed  Google Scholar 

  17. Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, Prasad PN. Chem Soc Rev, 2013, 42: 1236–1250

    CAS  PubMed  Google Scholar 

  18. Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. Nano Today, 2011, 6: 446–465

    CAS  Google Scholar 

  19. Zhang J, Chen R, Zhu Z, Adachi C, Zhang X, Lee CS. ACS Appl Mater Interfaces, 2015, 7: 26266–26274

    CAS  PubMed  Google Scholar 

  20. Zhao J, Zhong D, Zhou S. J Mater Chem B, 2018, 6: 349–365

    CAS  PubMed  Google Scholar 

  21. Hong G, Antaris AL, Dai H. Nat Biomed Eng, 2017, 1: 0010

    CAS  Google Scholar 

  22. Bashkatov AN, Genina EA, Tuchin VV. J Innov Opt Health Sci, 2011, 04: 9–38

    Google Scholar 

  23. Hong G, Diao S, Antaris AL, Dai H. Chem Rev, 2015, 115: 10816–10906

    CAS  PubMed  Google Scholar 

  24. Hang Y, Cai X, Wang J, Jiang T, Hua J, Liu B. Sci China Chem, 2018, 61: 898–908

    CAS  Google Scholar 

  25. Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Shi P, James TD, Tian H, Zhu WH. Angew Chem Int Ed, 2015, 54: 7275–7280

    CAS  Google Scholar 

  26. Rohatgi CV, Harada T, Need EF, Krasowska M, Beattie DA, Dickenson GD, Smith TA, Kee TW. ACS Appl Nano Mater, 2018, 1: 4801–4808

    CAS  Google Scholar 

  27. Qin W, Alifu N, Cai Y, Lam JWY, He X, Su H, Zhang P, Qian J, Tang BZ. Chem Commun, 2019, 55: 5615–5618

    CAS  Google Scholar 

  28. Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339–1386

    CAS  PubMed  Google Scholar 

  29. Pinto MR, Schanze KS. Synthesis, 2002, 9: 1293–1309

    Google Scholar 

  30. Pu KY, Liu B. Adv Funct Mater, 2011, 21: 3408–3423

    CAS  Google Scholar 

  31. Duan X, Liu L, Feng F, Wang S. Acc Chem Res, 2010, 43: 260–270

    CAS  PubMed  Google Scholar 

  32. Wang Y, Yao H, Zhou J, Hong Y, Chen B, Zhang B, Smith TA, Wong WWH, Zhao Z. J Polym Sci Part A-Polym Chem, 2019, 56: 672–680

    Google Scholar 

  33. Yuan H, Wang B, Lv F, Liu L, Wang S. Adv Mater, 2014, 26: 6978–6982

    CAS  PubMed  Google Scholar 

  34. Duarte A, Pu KY, Liu B, Bazan GC. Chem Mater, 2011, 23: 501–515

    CAS  Google Scholar 

  35. Lee SH, Komurlu S, Zhao X, Jiang H, Moriena G, Kleiman VD, Schanze KS. Macromolecules, 2011, 44: 4742–4751

    CAS  Google Scholar 

  36. Jiang H, Taranekar P, Reynolds J, Schanze K. Angew Chem Int Ed, 2009, 48: 4300–4316

    CAS  Google Scholar 

  37. Pu KY, Liu B. Adv Funct Mater, 2009, 19: 277–284

    CAS  Google Scholar 

  38. Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C. Biomacromolecules, 2016, 17: 2128–2136

    CAS  PubMed  Google Scholar 

  39. Gao M, Hong Y, Chen B, Wang Y, Zhou W, Wong WWH, Zhou J, Smith TA, Zhao Z. Polym Chem, 2017, 8: 3862–3866

    CAS  Google Scholar 

  40. Tan C, Pinto M, Kose M, Ghiviriga I, Schanze K. Adv Mater, 2004, 16: 1208–1212

    CAS  Google Scholar 

  41. Qian C, Chen Y, Feng P, Xiao X, Dong M, Yu J, Hu Q, Shen Q, Gu Z. Acta Pharmacol Sin, 2017, 38: 764–781

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng L, Zhu J, Wang Z. ACS Appl Mater Interfaces, 2016, 8: 19364–19370

    CAS  PubMed  Google Scholar 

  43. Kang M, Zhou C, Wu S, Yu B, Zhang Z, Song N, Lee MMS, Xu W, Xu FJ, Wang D, Wang L, Tang BZ. J Am Chem Soc, 2019, 141: 16781–16789

    CAS  PubMed  Google Scholar 

  44. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1: 1740–1741

    Google Scholar 

  45. Jiang X, Liu R, Liu H, Chang CK. J Chin Chem Soc, 2019, 66: 1090–1099

    CAS  Google Scholar 

  46. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    CAS  PubMed  Google Scholar 

  47. Zhao Z, Lam JWY, Tang BZ. J Mater Chem, 2012, 22: 23726–23740

    CAS  Google Scholar 

  48. Gao M, Wu Y, Chen B, He B, Nie H, Li T, Wu F, Zhou W, Zhou J, Zhao Z. Polym Chem, 2015, 6: 7641–7645

    CAS  Google Scholar 

  49. Wang Y, Yao H, Zhuang Z, Yao J, Zhou J, Zhao Z. J Mater Chem B, 2018, 6: 6360–6364

    CAS  PubMed  Google Scholar 

  50. Zhou Y, Hua J, Tang BZ, Tang Y. Sci China Chem, 2019, 62: 1312–1332

    CAS  Google Scholar 

  51. Appelqvist H, Wäster P, Kågedal K, Öllinger K. J Mol Cell Biol, 2013, 5: 214–226

    CAS  PubMed  Google Scholar 

  52. Gao P, Pan W, Li N, Tang B. Chem Sci, 2019, 10: 6035–6071

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Boya P, Kroemer G. Oncogene, 2008, 27: 6434–6451

    CAS  PubMed  Google Scholar 

  54. Fan F, Nie S, Yang D, Luo M, Shi H, Zhang YH. Bioconj Chem, 2012, 23: 1309–1317

    CAS  Google Scholar 

  55. Ouyang J, Zang Q, Chen W, Wang L, Li S, Liu RY, Deng Y, Liu ZQ, Li J, Deng L, Liu YN. Talanta, 2016, 159: 255–261

    CAS  PubMed  Google Scholar 

  56. Fukuda T, Ewan L, Bauer M, Mattaliano RJ, Zaal K, Ralston E, Plotz PH, Raben N. Ann Neurol, 2006, 59: 700–708

    CAS  PubMed  Google Scholar 

  57. Wu W, Mao D, Xu S, Kenry S, Hu F, Li X, Kong D, Liu B. Chem, 2018, 4: 1937–1951

    CAS  Google Scholar 

  58. Liu S, Zhang H, Li Y, Liu J, Du L, Chen M, Kwok RTK, Lam JWY, Phillips DL, Tang BZ. Angew Chem Int Ed, 2018, 57: 15189–15193

    CAS  Google Scholar 

  59. Derks YHW, Löwik DWPM, Sedelaar JPM, Gotthardt M, Boerman OC, Rijpkema M, Lütje S, Heskamp S. Theranostics, 2019, 9: 6824–6839

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. J Med Chem, 2020, 63: 1996–2012

    CAS  PubMed  Google Scholar 

  61. Wu W, Yang Y, Yang Y, Yang Y, Zhang K, Guo L, Ge H, Chen X, Liu J, Feng H. Small, 2019, 15: 1805549

    Google Scholar 

  62. Cheng Y, Sun C, Liu R, Yang J, Dai J, Zhai T, Lou X, Xia F. Angew Chem Int Ed, 2019, 58: 5049–5053

    CAS  Google Scholar 

  63. Yi X, Dai J, Han Y, Xu M, Zhang X, Zhen S, Zhao Z, Lou X, Xia F. Commun Biol, 2018, 1: 202

    PubMed  PubMed Central  Google Scholar 

  64. Xia F, Wu J, Wu X, Hu Q, Dai J, Lou X. Acc Chem Res, 2019, 52: 3064–3074

    CAS  PubMed  Google Scholar 

  65. Long Z, Dai J, Hu Q, Wang Q, Zhen S, Zhao Z, Liu Z, Hu JJ, Lou X, Xia F. Theranostics, 2020, 10: 2260–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. ACS Nano, 2020, 14: 854–866

    CAS  PubMed  Google Scholar 

  67. Dai J, Xu M, Wang Q, Yang J, Zhang J, Cui P, Wang W, Lou X, Xia F, Wang S. Theranostics, 2020, 10: 2385–2398

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng H, Le C, Wu J, Li XF, Zhang H, Le XC. ACS Nano, 2020, 14: 2817–2826

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 21722507, 21974128) and the Natural Science Foundation of Guangdong Province (2019B030301003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhou, Xiaoding Lou or Zujin Zhao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Dai, J., Zhuang, Z. et al. Red AIE conjugated polyelectrolytes for long-term tracing and image-guided photodynamic therapy of tumors. Sci. China Chem. 63, 1815–1824 (2020). https://doi.org/10.1007/s11426-020-9824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9824-2

Navigation