Skip to main content
Log in

Dual of 2D Fractional Fourier Transform Associated to Itô–Hermite Polynomials

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A class of integral transforms, on the planar Gaussian Hilbert space with range in the weighted Bergman space on the bi-disk, is defined as the dual transforms of the 2d fractional Fourier transform associated with the Mehler function for Itô–Hermite polynomials. Some spectral properties of these transforms are investigated. Namely, we study their boundedness and identify their null spaces as well as their ranges. Such identification depends on the zeros set of Itô–Hermite polynomials. Moreover, the explicit expressions of their singular values are given and compactness and membership in p-Schatten class are studied. The relationship to specific fractional Hankel transforms is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  Google Scholar 

  3. Condon, E.U.: Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Natl. Acad. Sci. USA 23, 158–164 (1937)

    Article  Google Scholar 

  4. Chen, Y., Liu, Y.: On the eigenfunctions of the complex Ornstein–Uhlenbeck operators. Kyoto J. Math. 54(3), 577–596 (2014)

    Article  MathSciNet  Google Scholar 

  5. Ghanmi, A.: Operational formulae for the complex Hermite polynomials \(H_{p, q}(z, \bar{z})\). Integral Transform. Spec. Funct. 24(11), 884–895 (2013)

    Article  Google Scholar 

  6. Ghanmi, A.: Mehler’s formulas for the univariate complex Hermite polynomials and applications. Math. Methods Appl. Sci. 40(18), 7540–7545 (2017)

    Article  MathSciNet  Google Scholar 

  7. Ghanmi, A.: On dual transform of fractional Hankel transform. Preprint (2020)

  8. Graf, U.: Introduction to Hyperfunctions and their Integral Transforms. An Applied and Computational Approach. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  9. Hörmander, L.: Symplectic classification of quadratic forms, and general Mehler formulas. Mathematische Zeitschrift 219, 413–449 (1995)

    Article  MathSciNet  Google Scholar 

  10. Intissar, A., Intissar, A.: Spectral properties of the Cauchy transform on \(L^2({\mathbb{C}};e^{-|z|^2}d\lambda )\). J. Math. Anal. Appl. 313(2), 400–418 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ismail, M.E.H.: Analytic properties of complex Hermite polynomials. Trans. Am. Math. Soc. 368(2), 1189–1210 (2016)

    Article  MathSciNet  Google Scholar 

  12. Itô, K.: Complex multiple Wiener integral. Jpn. J. Math. 22, 63–86 (1952)

    Article  MathSciNet  Google Scholar 

  13. Kibble, W.F.: An extension of a theorem of Mehler’s on Hermite polynomials. Proc. Camb. Philos. Soc. 41, 12–15 (1945)

    Article  MathSciNet  Google Scholar 

  14. Louck, J.D.: Extension of the Kibble–Slepian formula for Hermite polynomials using boson operator methods. Adv. Appl. Math. 2(3), 239–249 (1981)

    Article  MathSciNet  Google Scholar 

  15. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems in the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  Google Scholar 

  16. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung. J. Reine Angew. Math. 66, 161–176 (1866)

    MathSciNet  Google Scholar 

  17. Slepian, D.: On the symmetrized Kronecker power of a matrix and extensions of Mehler’s formula for Hermite polynomials. SIAM J. Math. Anal. 3(4), 606–616 (1972)

    Article  MathSciNet  Google Scholar 

  18. Stanton, D.: Orthogonal polynomials and combinatorics. In: Special Functions 2000: Current Perspective and Future Directions, pp. 389–410. Kluwer (2000)

  19. Srivastava, H.M., Singhal, J.P.: Some extensions of the Mehler formula. Proc. Am. Math. Soc. 31, 135–141 (1972)

    Article  MathSciNet  Google Scholar 

  20. Wiener, N.: Hermitian Polynomials and Fourier Analysis. J. Math. Phys. 8, 70–73 (1929)

    Article  Google Scholar 

  21. Wünsche, A.: Transformations of Laguerre 2D-polynomials and their applications to quasiprobabilities. J. Phys. A. 21, 3179–3199 (1999)

    Article  Google Scholar 

  22. Zayed, A.: Two-dimensional fractional Fourier transform and some of its properties. Integral Transform. Spec. Funct. 29(7), 553–570 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhadi Benahmadi.

Additional information

Dedicated to the memory of Professor Elhachmia Ait Benhaddou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benahmadi, A., Ghanmi, A. Dual of 2D Fractional Fourier Transform Associated to Itô–Hermite Polynomials. Results Math 75, 168 (2020). https://doi.org/10.1007/s00025-020-01297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01297-y

Keywords

Mathematics Subject Classification

Navigation