Skip to main content
Log in

Optimal resource allocation for dynamic product development process via convex optimization

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

Resource allocation is an essential aspect of successful Product Development (PD). In this paper, we formulate the dynamic resource allocation problem of the PD process as a convex optimization problem. Specially, we build and solve two variants of this problem: the budget-constrained problem and the performance-constrained problem. We use convex optimization as a framework to optimally solve large problem instances at a relatively small computational cost. The solutions to both problems exhibit similar trends regarding resource allocation decisions and performance evolution. Furthermore, we show that the product architecture affects resource allocation, which in turn affects the performance of the PD process. By introducing centrality metrics for measuring the location of the modules and design rules within the product architecture, we find that resource allocation decisions correlate to their metrics. These results provide simple, but powerful, managerial guidelines for efficiently designing and managing the PD process. Finally, for validating the model and its results, we introduce and solve two design case studies for a mechanical manipulator and for an automotive appearance design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Product architecture is not the only driver for resource allocation decisions. Other drivers, such as existing product lineup, competitive products, product demand and price, technological advancements, consumer taste changes, balancing the development portfolio, etc., may play an influential role Terwiesch and Ulrich (2008). However, we focus on product architecture since it is the central issue in our proposed model.

  2. See (Reich and Levy 2004, Sect. 4) for a related discussion on convex optimization in the context of engineering design.

References

  • Ahmad RA, Yassine A (2018) Experimenting with the NK and DSM models. In International dependency and structure modeling (DSM) conference. The 20th international DSM conference, pp. 47-57

  • Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. J Oper Res Soc 54(6):614–626

    Article  Google Scholar 

  • Baldwin CY, Clark KB (2000) Design rules. The MIT Press, Cambridge

    Book  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Batallas D, Yassine A (2006) Information leaders in product development organizational networks: social network analysis of the design structure matrix. IEEE Trans Eng Manag 43(4):570–582

    Article  Google Scholar 

  • Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. Springer, Berlin

    Book  Google Scholar 

  • Boctor FF (1996) A new and efficient heuristic for scheduling projects with resource restrictions and multiple execution modes. Eur J Oper Res 90(2):349–361

    Article  MathSciNet  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Boyd S, Kim SJ, Vandenberghe L, Hassibi A (2007) A tutorial on geometric programming. Optim Eng 8(1):67–127

    Article  MathSciNet  Google Scholar 

  • Braha D, Bar-Yam Y (2004a) Information flow structure in large-scale product development organizational networks. J Inf Technol 19(4):244–253

    Article  Google Scholar 

  • Braha D, Bar-Yam Y (2004b) Topology of large-scale engineering problem-solving networks. Phys Rev E 69(1):016113

    Article  Google Scholar 

  • Braha D, Bar-Yam Y (2007) The statistical mechanics of complex product development: empirical and analytical results. Manag Sci 53(7):1127–1145

    Article  Google Scholar 

  • Christensen CM (2002) Disruption, disintegration and the dissipation of differentiability. Ind Corp Change 11(5):955–993

    Article  Google Scholar 

  • Collins S, Yassine A, Borgatti S (2009) Evaluating product development systems using network analysis. Syst Eng J 12(1):55–68

    Article  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs I. Publ Math Debr 6:290–297

    MATH  Google Scholar 

  • Frenken K, Mendritzki S (2012) Optimal modularity: a demonstration of the evolutionary advantage of modular architectures. J Evol Econ 22(5):935–956

    Article  Google Scholar 

  • George P, Remon P, Ahmad B (2012) Development of a DSM-based methodology in an academic setting. ASME J Mech Des 134(2):021007

    Article  Google Scholar 

  • Joglekar NR, Yassine A, Eppinger SD, Whitney DE (2001) Performance of coupled product development activities with a deadline. Manag Sci 47(12):1605–1620

    Article  Google Scholar 

  • Luo J (2015) A simulation-based method to evaluate the impact of product architecture on product evolvability. Res Eng Des 26(4):355–371

    Article  Google Scholar 

  • Maier JF, Wynn DC, Biedermann W, Lindemann U, Clarkson PJ (2014) Simulating progressive iteration, rework and change propagation to prioritise design tasks. Res Eng Des 25(4):283–307

    Article  Google Scholar 

  • Newman M (2010) Networks. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ogura M, Harada J, Kishida M, Yassine A (2019) Resource optimization of product development projects with time-varying dependency structure. Res Eng Des 30(3):435–452

    Article  Google Scholar 

  • Ogura M, Kishida M, Lam J (2020) Geometric programming for optimal positive linear systems. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2019.2960697

    Article  MathSciNet  Google Scholar 

  • Reich Y, Levy E (2004) Managing product design quality under resource constraints. Int J Prod Res 42(13):2555–2572

    Article  Google Scholar 

  • Rivkin JW, Siggelkow M (2007) Patterned interactions in complex systems: implications for exploration. Manag Sci 53(7):1068–1085

    Article  Google Scholar 

  • Smith RP, Eppinger SD (1997) Identifying controlling features of engineering design iteration. Manag Sci 43(3):276–293

    Article  Google Scholar 

  • Sosa M, Mihm J, Browning T (2011) Degree distribution and quality in complex engineered systems. J Mech Des 133(10):101008

    Article  Google Scholar 

  • Stellman A, Creene J (2005) Applied software project management. O’Reilly Media, Sebastopol

    Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Experimental designs using ANOVA. Duxbury

  • Terwiesch C, Ulrich K (2008) Managing the opportunity portfolio. Res Technol Manag 51(5):27–38

    Article  Google Scholar 

  • Ulrich K (1995) The role of product architecture in the manufacturing firm. Res Policy 24(3):419–440

    Article  Google Scholar 

  • Ulrich K (2008) Product design and development, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Ulrich KT, Eppinger SD (2008) Collective dynamics of small-world’ networks. Nature 393(6684):440–442

    Google Scholar 

  • Yassine A (2019) Managing the development of complex product systems: an integrative literature review. IEEE Trans Eng Manag 1:18

    Google Scholar 

  • Yassine A, Naoum-Sawaya J (2016) Architecture, performance, and investment in product development networks. J Mech Des 139(1):011101

    Article  Google Scholar 

  • Yassine A, Wissmann LA (2007) The implications of product architecture on the firm. Syst Eng 10(2):118–137

    Article  Google Scholar 

  • Yassine A, Joglekar N, Braha D, Eppinger S, Whitney D (2003) Information hiding in product development: the design churn effect. Res Eng Des 14(3):145–161

    Article  Google Scholar 

  • Yu TL, Yassine A, Goldberg DE (2007) An information theoretic method for developing modular architectures using genetic algorithms. Res Eng Des 18(2):91–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we illustrate how we can reduce Problems 1 and 2 to convex optimization problems. We introduce the following notations for cost functions. For the total cost function in (3), we define

$$\begin{aligned} B_k^+(\phi _{k}, \gamma _{k})=\sum _{i=1}^{n} f_i^+(\phi _{i, k})+\sum _{i=1}^{n}\sum _{i\ne j}g_{ij}^+(\gamma _{ij, k}), \\ B_k^-(\phi _{k}, \gamma _{k})=\sum _{i=1}^{n} f_i^+({\bar{\phi }}_{i, k})+\sum _{i=1}^{n}\sum _{i\ne j}g_{ij}^+({\bar{\gamma }}_{ij, k}). \end{aligned}$$

Let us first show that Problem 1 reduces to solving a convex optimization problem. Notice that the optimization problem (4) is equivalent to

$$ {\mkern 1mu} \mathop {{\text{minimize}}}\limits_{{\phi ,\gamma }} {\mkern 1mu} \;\sum\limits_{{i = 1}}^{n} {P_{i} } (T) $$
(7a)
$$\begin{aligned} {{\,\mathrm{\text {subject to}}\,}}&B_k(\phi _{k}, \gamma _{k}) \le {\bar{B}}_k, \end{aligned}$$
(7b)
$$\begin{aligned}&{0<{\underline{\phi }}_{i, k} \le \phi _{i, k} \le {\bar{\phi }}_{i, k},}\end{aligned}$$
(7c)
$$\begin{aligned}&{0<{\underline{\gamma }}_{ij, k} \le \gamma _{ij, k} \le {\bar{\gamma }}_{ij, k},}~{k=1, \dotsc ,T.} \end{aligned}$$
(7d)

Under this notation, we can show that the solution of the budget-constrained problem is given by

$$\begin{aligned} \phi =\exp [x],~\gamma =\exp [y], \end{aligned}$$
(8)

where \(\exp [\cdot ]\) is the entrywise exponential function of the variables, and \(x=\{x_k\}^T_{k=1}\) and \(y=\{y_k\}^T_{k=1}\) solve the following convex optimization problem:

$$ {\mkern 1mu} \mathop {{\text{minimize}}}\limits_{{x,y,\Gamma }} \;\Gamma $$
(9a)
$$\begin{aligned} {{\,\mathrm{\text {subject to}}\,}}&\log B_k^+(x_{k}, y_{k}) \le \log ({\bar{B}}_k+B_k^-), \end{aligned}$$
(9b)
$$\begin{aligned}&\log {\sum _{i=1}^{n}P_i(T)} {\le \Gamma }, \end{aligned}$$
(9c)
$$\begin{aligned}&\log {\underline{\phi }}_{i, k} \le x_{i, k} \le \log {\bar{\phi }}_{i, k},\end{aligned}$$
(9d)
$$\begin{aligned}&\log {\underline{\gamma }}_{ij, k} \le y_{ij, k} \le \log {\bar{\gamma }}_{ij, k}. \end{aligned}$$
(9e)

Let us give a brief proof of this statement. Under Lemma 1, it can easily be seen that (7a), (7b), and (7d) in the budget-constrained problem are equivalent to (9b), (9c), (9d), and (9e). Therefore, the solution of the optimization problem (9) given by (8) is the solution of the budget-constrained problem. Under this equivalence, we show the convexity of the optimization problem (9). It is sufficient to show that constraints (9b) and (9c) are convex if the performance functions (7a), (7b) and the cost function (3) follow Definition 1.

We can similarly reduce Problem 2 to a convex optimization problem. We can specifically show that the solution of the performance-constrained problem is given by (8), where \(x=\{x_k\}^T_{k=1}\) and \(y=\{y_k\}^T_{k=1}\) solve the following convex optimization problem

$$ \begin{gathered} \mathop {{\text{minimize}}}\limits_{{_{{x,y,\Psi }} }} {\mkern 1mu} \Psi {\mkern 1mu} \hfill \\ {\text{subject to}}{\mkern 1mu} \;\log \sum\limits_{{i = 1}}^{n} {P_{i} } (T) \le \log \bar{P},\; \hfill \\ \log \sum\limits_{{k = 1}}^{T} {B_{k}^{ + } } (x_{k} ,y_{k} ) \le \log \left( {\Psi + \sum\limits_{{k = 1}}^{T} {B_{k}^{ - } } } \right), \hfill \\ \log \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\phi } _{{i,k}} \le x_{{i,k}} \le \log \bar{\phi }_{{i,k}} , \hfill \\ \log \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\gamma } _{{ij,k}} \le y_{{ij,k}} \le \log \bar{\gamma }_{{ij,k}} . \hfill \\ \end{gathered} $$

We omit the proof of this statement because it is similar to the one for the budget-constrained problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Ogura, M., Kishida, M. et al. Optimal resource allocation for dynamic product development process via convex optimization. Res Eng Design 32, 71–90 (2021). https://doi.org/10.1007/s00163-020-00346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-020-00346-5

Keywords

Navigation