Skip to main content
Log in

Adaptive trajectory tracking control of a free-flying space robot subject to input nonlinearities

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The input nonlinearities widely exist in a large range of mechanical systems. Nonetheless, they were relatively less considered in the trajectory tracking control of a space robot in the previous studies. In this paper, an adaptive neural network (NN) control method is proposed for the fast and exact trajectory tracking control of an attitude-controlled free-flying space robot subject to input nonlinearities. The parametric uncertainties and external disturbances are also taken into the consideration. First, a model-based controller is designed to track the desired trajectory of the space robot within a framework of backstepping technique. Then, an adaptive NN controller is designed by using two NNs to compensate for the lumped uncertainties caused by parametric uncertainties and external disturbances and the input nonlinearities, respectively. Rigorous theoretical analysis for the semiglobal uniform ultimate boundedness of the whole closed-loop system is provided. The proposed adaptive NN controller is structurally simple and model-independent, which makes the controller affordable for practical applications. In addition, the proposed adaptive NN controller can guarantee the position and velocity tracking errors converge to the small neighborhoods about zero even in the presence of parametric uncertainties, external disturbances, and input nonlinearities. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance in the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Flores-Abad A, Ma O, Pham K, Ulrich S (2014) A review of space robotics technologies for on-orbit serving. Prog Aerosp Sci 68:1–26

    Article  Google Scholar 

  2. Shan M, Guo J, Gill E (2016) Review and comparison of active space debris capturing and removal methods. Prog Aerosp Sci 80:18–32

    Article  Google Scholar 

  3. Li W-J, Cheng D-Y, Liu X-G, Wang Y-B, Shi W-H, Tang Z-X, Gao F, Zeng F-M, Chai H-Y, Luo W-B, Cong Q, Gao Z-L (2019) On-orbit service (OOS) of spacecraft: a review of engineering developments. Prog Aerosp Sci 108:32–120

    Article  Google Scholar 

  4. Graham AR, Kingston J (2015) Assessment of the commercial viability of selected options for on-orbit servicing (OOS). Acta Astronaut 117:38–48

    Article  Google Scholar 

  5. Liou J-C, Johnson NL, Hill NM (2010) Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut 66(5–6):648–653

    Article  Google Scholar 

  6. Smahat A, Mankour A, Slimane S, Roubache R, Bendine K, Guelailia A (2020) Numerical investigation of debris impact on spacecraft structure at hyper-high velocity. J Braz Soc Mech Sci Eng 42(3):117

    Article  Google Scholar 

  7. Hirzinger G, Brunner B, Dietrich J, Heindl J (1993) Sensor-based space robotics—ROTEX and its telerobotic features. IEEE Trans Robot Autom 9(5):649–663

    Article  Google Scholar 

  8. Yoshida K (2003) Engineering Test Satellite VII flight experiments for space robot dynamics and control: theory on laboratory test beds ten years ago, now in orbit. Int J Robot Res 22(5):321–335

    Article  Google Scholar 

  9. Friend RB (2008) Orbital Express program summary and mission overview. In: Proceedings of SPIE, sensors and systems for space applications II, 695803

  10. Umetani Y, Yoshida K (1989) Resolved motion rate control of space manipulators with generalized Jacobian matrix. IEEE Trans Robot Autom 5(3):303–314

    Article  Google Scholar 

  11. Vafa Z, Dubowsky S (1990) The kinematics and dynamics of space manipulators: the virtual manipulator approach. Int J Robot Res 9(4):3–21

    Article  Google Scholar 

  12. Papadopoulos E, Dubowsky S (1991) On the nature of control algorithms for free-floating space manipulators. IEEE Trans Robot Autom 7(6):750–758

    Article  Google Scholar 

  13. Yoshida K, Yoshikawa S (1997) Feedback control of space robot attitude by cyclic arm motion. J Guid Control Dyn 20(4):715–720

    Article  Google Scholar 

  14. Parlaktuna O, Ozkan M (2004) Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot Auton Syst 46(3):185–193

    Article  Google Scholar 

  15. Wang H, Xie Y (2009) Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 45(6):1510–1517

    Article  MathSciNet  Google Scholar 

  16. Wang H (2011) On adaptive inverse dynamics for free-floating space manipulators. Robot Auton Syst 59(10):782–788

    Article  Google Scholar 

  17. Wang H, Xie Y (2012) Prediction error based adaptive Jacobian tracking of free-floating space manipulators. IEEE Trans Aerosp Electron Syst 48(4):3207–3221

    Article  Google Scholar 

  18. Khaloozadeh H, Homaeinejad MR (2010) Real-time regulated sliding mode controller design of multiple manipulator space free-flying robot. J Mech Sci Technol 24(6):1337–1351

    Article  Google Scholar 

  19. Pazelli TFPAT, Terra MH, Siqueira AAG (2011) Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator. Control Eng Pract 19(4):395–408

    Article  Google Scholar 

  20. Hu Q, Xu L, Zhang A (2012) Adaptive backstepping trajectory tracking control of robot manipulator. J Frankl Inst 349(3):1087–1105

    Article  MathSciNet  Google Scholar 

  21. Kumar N, Panwar V, Borm J-H, Chai J, Yoon J (2013) Adaptive neural controller for space robot system with an attitude controlled base. Neural Comput Appl 23(7–8):2333–2340

    Article  Google Scholar 

  22. Flores-Abad A, Wei Z, Ma O, Pham K (2014) Optimal capture of space robots for capturing a tumbling object with uncertainties. J Guid Control Dyn 37(6):2014–2017

    Article  Google Scholar 

  23. Flores-Abad A, Zhang L, Wei Z, Ma O (2017) Optimal capture of a tumbling object in orbit using a space manipulator. J Intell Robot Syst 86(2):199–211

    Article  Google Scholar 

  24. Rybus T, Seweryn K, Sasiadek JZ (2017) Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC). J Intell Robot Syst 85(3–4):491–509

    Article  Google Scholar 

  25. Yu X, Chen L (2017) Observer-based two-time scale robust control of free-flying flexible-joint space manipulators with external disturbances. Robotica 35(11):2201–2217

    Article  Google Scholar 

  26. Yao Q, Ge S (2018) Optimal reorientation of a free-floating space robot subject to initial state uncertainties. J Braz Soc Mech Sci Eng 40(3):146

    Article  MathSciNet  Google Scholar 

  27. Seddaoul A, Saaj CM (2019) Combined nonlinear H controller for a controlled-floating space robot. J Guid Control Dyn 42(8):1878–1885

    Article  Google Scholar 

  28. Jia S, Shan J (2020) Finite-time trajectory tracking control of space manipulator under actuator saturation. IEEE Trans Ind Electron 67(3):2086–2096

    Article  Google Scholar 

  29. Xie Z, Sun T, Kwan T, Xu X (2020) Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning. Acta Astronaut 176:156–172

    Article  Google Scholar 

  30. Zhu Y, Qiao J, Zhang Y, Guo L (2019) High-precision trajectory tracking control for space manipulator with neutral uncertainty and deadzone nonlinearity. IEEE Trans Control Syst Technol 27(5):2254–2262

    Article  Google Scholar 

  31. Tao G, Kokotović PV (1996) Adaptive control of systems with actuator and sensor nonlinearities. John Wiley and Sons, New York

    MATH  Google Scholar 

  32. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. John Wiley and Sons, New York

    Google Scholar 

  33. Ge SS, Huang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer, Norwell

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijia Yao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Technical Editor: Jader Barbosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The detailed dynamic equation of a planar free-flying two-link space robot is given as

$$ {\mathbf{M}}\left( {\mathbf{q}} \right){\mathbf{\ddot{q}}} + {\mathbf{C}}\left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right){\dot{\mathbf{q}}} = {\varvec{\uptau}} + {\mathbf{d}}, $$
(49)
$$ {\mathbf{M}}\left( {\mathbf{q}} \right) = \left[ {\begin{array}{*{20}c} {M_{11} } & {M_{12} } & {M_{13} } \\ {M_{21} } & {M_{22} } & {M_{23} } \\ {M_{31} } & {M_{32} } & {M_{33} } \\ \end{array} } \right], $$
(50)
$$ M_{11} = 2c_{1} \cos \left( {q_{1} } \right) + 2c_{2} \cos \left( {q_{2} } \right) + 2c_{3} \cos \left( {q_{1} + q_{2} } \right) + 2c_{4} \sin \left( {q_{2} } \right) + 2c_{5} \sin \left( {q_{1} + q_{2} } \right) + c_{6} , $$
(51)
$$ M_{12} = M_{21} = c_{1} \cos \left( {q_{1} } \right) + 2c_{2} \cos \left( {q_{2} } \right) + c_{3} \cos \left( {q_{1} + q_{2} } \right) + 2c_{4} \sin \left( {q_{2} } \right) + c_{5} \sin \left( {q_{1} + q_{2} } \right) + c_{7} , $$
(52)
$$ M_{13} = M_{31} = c_{2} \cos \left( {q_{2} } \right) + c_{3} \cos \left( {q_{1} + q_{2} } \right) + c_{4} \sin \left( {q_{2} } \right) + c_{5} \sin \left( {q_{1} + q_{2} } \right) + c_{8} , $$
(53)
$$ M_{22} = 2c_{2} \cos \left( {q_{2} } \right) + 2c_{4} \sin \left( {q_{2} } \right) + c_{7} , $$
(54)
$$ M_{23} = M_{32} = c_{2} \cos \left( {q_{2} } \right) + c_{4} \sin \left( {q_{2} } \right) + c_{8} , $$
(55)
$$ M_{33} = c_{8} , $$
(56)
$$ {\mathbf{C}}\left( {{\mathbf{q}},{\dot{\mathbf{q}}}} \right) = \left[ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{13} } \\ {C_{21} } & {C_{22} } & {C_{23} } \\ {C_{31} } & {C_{32} } & {C_{33} } \\ \end{array} } \right], $$
(57)
$$ \begin{aligned} C_{11} = - c_{1} \sin \left( {q_{1} } \right)\dot{q}_{1} - c_{2} \sin \left( {q_{2} } \right)\dot{q}_{2} - c_{3} \sin \left( {q_{1} + q_{2} } \right)\left( {\dot{q}_{1} + \dot{q}_{2} } \right) \hfill \\ \;\;\;\;\;\;\;\; + c_{4} \cos \left( {q_{2} } \right)\dot{q}_{2} + c_{5} \cos \left( {q_{1} + q_{2} } \right)\left( {\dot{q}_{1} + \dot{q}_{2} } \right), \hfill \\ \end{aligned} $$
(58)
$$ \begin{aligned} C_{12} = - c_{1} \sin \left( {q_{1} } \right)\left( {\dot{q}_{0} + \dot{q}_{1} } \right) - c_{2} \sin \left( {q_{2} } \right)\dot{q}_{2} - c_{3} \sin \left( {q_{1} + q_{2} } \right)\left( {\dot{q}_{0} + \dot{q}_{1} + \dot{q}_{2} } \right) \hfill \\ \;\;\;\;\;\;\;\; + c_{4} \cos \left( {q_{2} } \right)\dot{q}_{2} + c_{5} \cos \left( {q_{1} + q_{2} } \right)\left( {\dot{q}_{0} + \dot{q}_{1} + \dot{q}_{2} } \right), \hfill \\ \end{aligned} $$
(59)
$$ C_{13} = - \left( {c_{2} \sin \left( {q_{2} } \right) + c_{3} \sin \left( {q_{1} + q_{2} } \right) - c_{4} \cos \left( {q_{2} } \right) - c_{5} \cos \left( {q_{1} + q_{2} } \right)} \right)\left( {\dot{q}_{0} + \dot{q}_{1} + \dot{q}_{2} } \right), $$
(60)
$$ C_{21} = c_{1} \sin \left( {q_{1} } \right)\dot{q}_{0} - c_{2} \sin \left( {q_{2} } \right)\dot{q}_{2} + c_{3} \sin \left( {q_{1} + q_{2} } \right)\dot{q}_{0} + c_{4} \cos \left( {q_{2} } \right)\dot{q}_{2} - c_{5} \cos \left( {q_{1} + q_{2} } \right)\dot{q}_{0} , $$
(61)
$$ C_{22} = - c_{2} \sin \left( {q_{2} } \right)\dot{q}_{2} + c_{4} \cos \left( {q_{2} } \right)\dot{q}_{2} , $$
(62)
$$ C_{23} = \left( { - c_{2} \sin \left( {q_{2} } \right) + c_{4} \cos \left( {q_{2} } \right)} \right)\left( {\dot{q}_{0} + \dot{q}_{1} + \dot{q}_{2} } \right), $$
(63)
$$ C_{31} = c_{2} \sin \left( {q_{2} } \right)\left( {\dot{q}_{0} + \dot{q}_{1} } \right) + c_{3} \sin \left( {q_{1} + q_{2} } \right)\dot{q}_{0} - c_{4} \cos \left( {q_{2} } \right)\left( {\dot{q}_{0} + \dot{q}_{1} } \right) - c_{5} \cos \left( {q_{1} + q_{2} } \right)\dot{q}_{0} , $$
(64)
$$ C_{32} = \left( {c_{2} \sin \left( {q_{2} } \right) - c_{4} \cos \left( {q_{2} } \right)} \right)\left( {\dot{q}_{0} + \dot{q}_{1} } \right), $$
(65)
$$ C_{33} = 0, $$
(66)

where the coefficients \( c_{i} \) (\( i = 1,2, \ldots ,8 \)) are given as

$$ c_{1} = {{m_{0} b_{0} \left( {m_{1} a_{1} + m_{2} a_{1} + m_{2} b_{1} + m_{t} a_{1} + m_{t} b_{1} } \right)} \mathord{\left/ {\vphantom {{m_{0} b_{0} \left( {m_{1} a_{1} + m_{2} a_{1} + m_{2} b_{1} + m_{t} a_{1} + m_{t} b_{1} } \right)} {m_{s} }}} \right. \kern-0pt} {m_{s} }}, $$
(67)
$$ c_{2} = {{\left[ {m_{0} m_{t} \left( {a_{1} + b_{1} } \right)\left( {a_{2} + b_{2} + a_{3} \cos \left( {q_{t} } \right)} \right) + m_{0} m_{2} a_{2} \left( {a_{1} + b_{1} } \right) + m_{1} m_{2} b_{1} a_{2} + m_{1} m_{t} b_{1} \left( {a_{2} + b_{2} } \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {m_{0} m_{t} \left( {a_{1} + b_{1} } \right)\left( {a_{2} + b_{2} + a_{3} \cos \left( {q_{t} } \right)} \right) + m_{0} m_{2} a_{2} \left( {a_{1} + b_{1} } \right) + m_{1} m_{2} b_{1} a_{2} + m_{1} m_{t} b_{1} \left( {a_{2} + b_{2} } \right)} \right]} {m_{s} }}} \right. \kern-0pt} {m_{s} }}, $$
(68)
$$ c_{3} = {{m_{0} b_{0} \left( {m_{t} \left( {a_{2} + b_{2} + a_{3} \cos \left( {q_{t} } \right)} \right) + m_{2} a_{2} } \right)} \mathord{\left/ {\vphantom {{m_{0} b_{0} \left( {m_{t} \left( {a_{2} + b_{2} + a_{3} \cos \left( {q_{t} } \right)} \right) + m_{2} a_{2} } \right)} {m_{s} }}} \right. \kern-0pt} {m_{s} }}, $$
(69)
$$ c_{4} = {{ - m_{t} a_{3} \sin \left( {q_{t} } \right)\left( {m_{0} a_{1} + m_{0} b_{1} + m_{1} b_{1} } \right)} \mathord{\left/ {\vphantom {{ - m_{t} a_{3} \sin \left( {q_{t} } \right)\left( {m_{0} a_{1} + m_{0} b_{1} + m_{1} b_{1} } \right)} {m_{s} }}} \right. \kern-0pt} {m_{s} }}, $$
(70)
$$ c_{5} = {{ - m_{t} m_{0} b_{0} a_{3} \sin \left( {q_{t} } \right)} \mathord{\left/ {\vphantom {{ - m_{t} m_{0} b_{0} a_{3} \sin \left( {q_{t} } \right)} {m_{s} }}} \right. \kern-0pt} {m_{s} }}, $$
(71)
$$ \begin{aligned} c_{6} = \left[ {m_{0} m_{1} \left( {b_{0}^{2} + a_{1}^{2} } \right) + m_{0} m_{2} \left( {b_{0}^{2} + a_{1}^{2} + b_{1}^{2} + a_{2}^{2} + 2a_{1} b_{1} } \right)} \right. \hfill \\ \;\;\;\;\;\; + m_{0} m_{t} \left( {b_{0}^{2} + a_{1}^{2} + b_{1}^{2} + a_{2}^{2} + b_{2}^{2} + a_{3}^{2} + 2a_{1} b_{1} + 2a_{2} b_{2} + 2\left( {a_{2} + b_{2} } \right)a_{3} \cos \left( {q_{t} } \right)} \right) \hfill \\ \;\;\;\;\;\; + m_{1} m_{t} \left( {b_{1}^{2} + a_{2}^{2} + b_{2}^{2} + a_{3}^{2} + 2a_{2} b_{2} + 2\left( {a_{2} + b_{2} } \right)a_{3} \cos \left( {q_{t} } \right)} \right) \hfill \\ {{\;\;\;\;\;\;\left. { + m_{2} m_{t} \left( {b_{2}^{2} + a_{3}^{2} + 2b_{2} a_{3} \cos \left( {q_{t} } \right)} \right)} \right]} \mathord{\left/ {\vphantom {{\;\;\;\;\;\;\left. { + m_{2} m_{t} \left( {b_{2}^{2} + a_{3}^{2} + 2b_{2} a_{3} \cos \left( {q_{t} } \right)} \right)} \right]} {m_{s} }}} \right. \kern-0pt} {m_{s} }} + I_{0} + I_{1} + I_{2} + I_{t} , \hfill \\ \end{aligned} $$
(72)
$$ \begin{aligned} c_{ 7} = \left[ {m_{0} m_{1} a_{1}^{2} + m_{0} m_{2} \left( {a_{1}^{2} + b_{1}^{2} + a_{2}^{2} + 2a_{1} b_{1} } \right) + m_{1} m_{2} \left( {b_{1}^{2} + a_{2}^{2} } \right)} \right. \hfill \\ \;\;\;\;\;\; + m_{0} m_{t} \left( {a_{1}^{2} + b_{1}^{2} + a_{2}^{2} + b_{2}^{2} + a_{3}^{2} + 2a_{1} b_{1} + 2a_{2} b_{2} + 2\left( {a_{2} + b_{2} } \right)a_{3} \cos \left( {q_{t} } \right)} \right) \hfill \\ \;\;\;\;\;\; + m_{1} m_{t} \left( {b_{1}^{2} + a_{2}^{2} + b_{2}^{2} + a_{3}^{2} + 2a_{2} b_{2} + 2\left( {a_{2} + b_{2} } \right)a_{3} \cos \left( {q_{t} } \right)} \right)\;\;\;\;\;\; \hfill \\ {{\;\;\;\;\;\;\left. { + m_{ 2} m_{t} \left( {b_{2}^{2} + a_{3}^{2} + 2b_{2} a_{3} \cos \left( {q_{t} } \right)} \right)} \right]} \mathord{\left/ {\vphantom {{\;\;\;\;\;\;\left. { + m_{ 2} m_{t} \left( {b_{2}^{2} + a_{3}^{2} + 2b_{2} a_{3} \cos \left( {q_{t} } \right)} \right)} \right]} {m_{s} }}} \right. \kern-0pt} {m_{s} }} + I_{1} + I_{2} + I_{t} , \hfill \\ \end{aligned} $$
(73)
$$ \begin{aligned} c_{8} = \left[ {\left( {m_{0} + m_{1} } \right)m_{2} a_{2}^{2} } \right. + \left( {m_{0} + m_{1} } \right)m_{t} \left( {a_{2}^{2} + b_{2}^{2} + a_{3}^{2} + 2a_{2} b_{2} + 2\left( {a_{2} + b_{2} } \right)a_{3} \cos \left( {q_{t} } \right)} \right)\;\;\;\;\;\; \hfill \\ {{\;\;\;\;\;\;\left. { + m_{ 2} m_{t} \left( {b_{2}^{2} + a_{3}^{2} + 2b_{2} a_{3} \cos \left( {q_{t} } \right)} \right)} \right]} \mathord{\left/ {\vphantom {{\;\;\;\;\;\;\left. { + m_{ 2} m_{t} \left( {b_{2}^{2} + a_{3}^{2} + 2b_{2} a_{3} \cos \left( {q_{t} } \right)} \right)} \right]} {m_{s} }}} \right. \kern-0pt} {m_{s} }} + I_{2} + I_{t} , \hfill \\ \end{aligned} $$
(74)
$$ m_{s} = m_{0} + m_{1} + m_{2} + m_{t} . $$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q. Adaptive trajectory tracking control of a free-flying space robot subject to input nonlinearities. J Braz. Soc. Mech. Sci. Eng. 42, 574 (2020). https://doi.org/10.1007/s40430-020-02652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02652-4

Keywords

Navigation