Skip to main content

Advertisement

Log in

Effect of die structure on the properties of self-reinforced polypropylene/noil ramie fiber composites prepared by solid-state extrusion

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the self-reinforced polypropylene (PP)/noil ramie fiber (NRF) composites were prepared by the solid-state extrusion method. And the effect of die structure such as draw ratio and conical angle on the morphology, thermal and mechanical properties of samples was investigated. The results indicated that the solid-state deformation of PP/NRF composites conducted below the melt transition promoted the formation of the orderly arranged microfibrils inside the samples, which arranged along the extrusion direction and could be observed by scanning electron microscopy (SEM). Besides, the increased draw ratio and conical angle both contributed to the higher degree of orientation, which was obvious observed inside the sample prepared at the draw ratio of 5 and conical angle of 20°. The thermal properties tested by differential scanning calorimetry (DSC) also suggested that the intensified orientation of microfibrillar structure not only demonstrated the transformation of the spherulitic crystal into the aligned chain crystals, but also resulted in the enhanced crystallinity and narrowed melting peak. Moreover, the highly oriented fibrillar bundle structure endowed the samples with the excellent tensile strength and flexural strength, which were up to 80.9 MPa and 83.5 MPa respectively and increased by 182.8% and 102.7% compared with the commonly extruded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pegoretti T, dos Santos MF, Evrard D et al (2014) Use of recycled natural fibres in industrial products: A comparative LCA case study on acoustic components in the Brazilian automotive sector. Resour Conserv Recy 84:1–14. https://doi.org/10.1016/j.resconrec.2013.12.010

    Article  Google Scholar 

  2. Suwei W, Ke C, Mingyin J, Ping X (2019) Effect of processing conditions on the microstructure of microcellular PP/WF composites prepared by the continuous extrusion molding technology. Mater Res Express 7:015308. https://doi.org/10.1088/2053-1591/ab5d73

    Article  CAS  Google Scholar 

  3. Suwei W, Ke C, Ping X, Mingyin J (2020) Research on the preparation and properties of foamed PP/wood flour composites. Mater Res Express 7:035308. https://doi.org/10.1088/2053-1591/ab802e

    Article  CAS  Google Scholar 

  4. Bledzki A, Al-Mamun DA, Faruk O (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym Lett 1:755–762. https://doi.org/10.3144/expresspolymlett.2007.104

    Article  CAS  Google Scholar 

  5. Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test 27:801–806. https://doi.org/10.1016/j.polymertesting.2008.06.002

    Article  CAS  Google Scholar 

  6. Li X, He L, Zhou H, Li W, Zha W (2012) Influence of silicone oil modification on properties of ramie fiber reinforced polypropylene composites. Carbohyd Polym 87:2000–2004. https://doi.org/10.1016/j.carbpol.2011.10.023

    Article  CAS  Google Scholar 

  7. Faruk O, Bledzki A K, Fink H P ,Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. ProgPolymSci 37.https://doi.org/10.1016/j.progpolymsci.2012.04.003

  8. Li Y, Moyo S, Ding Z, Shan Z, Qiu Y (2013) Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Ind Crop Prod 51:299–305. https://doi.org/10.1016/j.indcrop.2013.09.028

    Article  CAS  Google Scholar 

  9. Zhou M, Xu S, Li Y, He C, Jin T, Wang K et al (2014) Transcrystalline formation and properties of polypropylene on the surface of ramie fiber as induced by shear or dopamine modification. Polymer 55:3045–3053. https://doi.org/10.1016/j.polymer.2014.05.013

    Article  CAS  Google Scholar 

  10. Chapleau N, Mohanraj J, Ajji A, Ward IM (2005) Roll-drawing and die-drawing of toughened poly(ethylene terephthalate). Part 1. Structure and mechanical characterization. Polymer 46:1956–1966. https://doi.org/10.1016/j.polymer.2004.10.089

    Article  CAS  Google Scholar 

  11. Mourad AHI, Bekheet N, El-Butch A, Abdel-Latif L, Nafee D, Barton DC (2005) The effects of process parameters on the mechanical properties of die drawn polypropylene. Polym Test 24:169–180. https://doi.org/10.1016/j.polymertesting.2004.09.006

    Article  CAS  Google Scholar 

  12. Mohanraj J, Bonner MJ, Barton DC, Ward IM (2006) Physical and mechanical characterization of oriented polyoxymethylene produced by die-drawing and hydrostatic extrusion. Polymer 47:5897–5908. https://doi.org/10.1016/j.polymer.2006.05.056

    Article  CAS  Google Scholar 

  13. Jianchen C, Mingyin J, Ping X et al (2014) Physical and mechanical characterization of self-reinforced wood–polymer composite produced by solid-state extrusion. J Thermoplast Compos 27:1321–1333. https://doi.org/10.1177/0892705712471361

    Article  CAS  Google Scholar 

  14. Polec I, Hine PJ, Bonner MJ, Ward IM, Barton DC (2010) Die drawn wood polymer composites. I. Mechanical properties. Compos Sci Technol 70:45–52. https://doi.org/10.1016/j.compscitech.2009.09.005

    Article  CAS  Google Scholar 

  15. Jianchen C, Mingyin J, Ping X et al (2013) The effect of processing conditions on the mechanical properties and morphology of self-reinforced wood-polymer composite. Polym Composite 34:1567–1574. https://doi.org/10.1002/pc.22553

    Article  CAS  Google Scholar 

  16. Masoumi A, Craggs G (1997) Design of strain-rate-controlled dies for the die drawing of polymer sheet. J Mater Process Tech 72:407–412. https://doi.org/10.1016/S0924-0136(97)00203-3

    Article  Google Scholar 

  17. Feng Y, Hu Y, Zhao G, Yin J, Jiang W (2011) Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. J Appl Polym Sci 122:1564–1571. https://doi.org/10.1002/app.34281

    Article  CAS  Google Scholar 

  18. Zhang Y, Xue P, Ding Y, Jia M, Shi Z, Wang H (2016) Improvement of mechanical, dynamic -mechanical and thermal properties for noil ramie fiber reinforced polyethylene composites. Trans Nanjing Univ Aero Astro 33:121–128. https://doi.org/10.16356/j.1005-1120.2016.01.121

    Article  CAS  Google Scholar 

  19. Kmetty Á, Bárány T, Karger-Kocsis J (2010) Self-reinforced polymeric materials: a review. Prog Polym Sci 35:1288–1310. https://doi.org/10.1016/j.progpolymsci.2010.07.002

    Article  CAS  Google Scholar 

  20. Luo Y, Xin C, Yang Z, Yan B, He Y (2014) Solid-state foaming of isotactic polypropylene and its composites with spherical or fibrous poly(butylenes terephthalate). J Appl Polym Sci 132.https://doi.org/10.1002/app.41801

  21. Suwei W, Ping X, Mingyin J, Ke C (2019a) Effect of Polymer Blends on the Properties of Foamed Wood-Polymer Composites. Materials 12:1971. https://doi.org/10.3390/ma12121971

    Article  CAS  Google Scholar 

  22. Suwei W, Ping X, Mingyin J, Ke C (2019b) Extrusion foaming behavior of wood plastic composites based on PP/POE blends. Mater Res Express 6:115345. https://doi.org/10.1088/2053-1591/ab4f0c

    Article  Google Scholar 

  23. Zhao X, Ye L (2011) Structure and properties of highly oriented polyoxymethylene produced by hot stretching. Mat Sci Eng 528:4585–4591. https://doi.org/10.1016/j.msea.2011.02.039

    Article  CAS  Google Scholar 

  24. Matthews RG, Ajji A, Dumoulin MM, Prud’hommeb RE (2000) The effects of stress relaxation on the structure and orientation of tensile drawn poly(ethylene terephthalate). Polymer 41:7139–7145. https://doi.org/10.1016/s0032-3861(00)00052-5

    Article  CAS  Google Scholar 

  25. Obadal M, Cermák R, Stoklasa K, Habrová V (2004) Extrusion of self-reinforced polyethylene. Plast Rubber Compos 33:295–298. https://doi.org/10.1179/174328904X19985

    Article  CAS  Google Scholar 

  26. Alcock B, Cabrera NO, Barkoula NM, Loos J, Peijs T (2007) Interfacial properties of highly oriented coextruded polypropylene tapes for the creation of recyclable all-polypropylene composites. J Appl Polym Sci 104:118–129. https://doi.org/10.1002/app.24588

    Article  CAS  Google Scholar 

  27. Qing G, Xiaoguang Z, Dan C et al (1996) Self-reinforcement of polypropylene by oscillating packing injection molding under low pressure. J Appl Polym Sci 62:755–762. https://doi.org/10.1002/(SICI)1097-4628(19961031)62:5<755::AID-APP6>3.0.CO

    Article  Google Scholar 

  28. Youbing L, Jing C, Kaizhi S (2008) Self-reinforced isotactic polypropylene prepared by melt vibration injection molding. Polym-Plast Technol 47:673–677. https://doi.org/10.1080/03602550802129551

    Article  CAS  Google Scholar 

  29. Pukánszky B (1995) Polypropylene structure, blends and composites. https://doi.org/10.1007/978-94-011-0523-1_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Ding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Shi, Z., Cai, J. et al. Effect of die structure on the properties of self-reinforced polypropylene/noil ramie fiber composites prepared by solid-state extrusion. J Polym Res 27, 334 (2020). https://doi.org/10.1007/s10965-020-02316-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02316-w

Keywords

Navigation