Skip to main content
Log in

JAB1 promotes palmitate-induced insulin resistance via ERK pathway in hepatocytes

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Insulin resistance (IR) is the primary pathological mechanism underlying Type 2 diabetes mellitus (T2DM). Many researches have reported the relationship between chronic inflammation and IR, while the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is rapidly activated in inflammatory conditions. However, the functional role of ERK1/2 in IR remains to be identified. We here reported that C-Jun activation domain-binding protein-1 (JAB1) was upregulated in IR. In addition, we showed that depletion of JAB1 led to recovery of insulin sensitivity. Given the fact that JAB1 played as an activator of ERK1/2, we assumed JAB1 was involved in IR through ERK pathway. So we assessed the effects of JAB1 knockdown in palmitate acid (PA) treated HepG2 cells. Importantly, JAB1 siRNA blocked the effect of PA-induced activation of ERK1/2. Furthermore, silencing of JAB1 could reduce the release of inflammatory factors, facilitate hepatic glucose uptake and improve lipid metabolism. All these data implicated that JAB1 knockdown might alleviate PA-induced IR through ERK pathway in hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ajjan RA, Schroeder V (2019) Role of complement in diabetes. Mol Immunol 114:270–277. https://doi.org/10.1016/j.molimm.2019.07.031

    Article  CAS  PubMed  Google Scholar 

  2. Anja S, Gabriel AB, Hans S, Ralf K (2017) Oxidized LDL-induced JAB1 influences NF-κB independent inflammatory signaling in human macrophages during foam cell formation. J Biomed Sci 24:12. https://doi.org/10.1186/s12929-017-0320-5

    Article  CAS  Google Scholar 

  3. Claudia M, Maria SM, Antonio S, Romina B, Francesco C, Cristina O, Antonella S, Mariateresa C (2019) Anthocyanins ameliorate palmitate-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Phytother Res 33:1888–1897. https://doi.org/10.1002/ptr.6379

    Article  CAS  Google Scholar 

  4. Ge M, Guo R, Lou HX, Zhang W (2018) Extract of Paecilomyces hepiali mycelia induces lipolysis through PKA-mediated phosphorylation of hormone-sensitive lipase and ERK-mediated downregulation of perilipin in 3T3-L1 adipocytes. BMC Complement Altern Med 18:326–335. https://doi.org/10.1186/s12906-018-2389-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo S (2014) Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 220:1–23. https://doi.org/10.1530/JOE-13-0327

    Article  CAS  Google Scholar 

  6. Hongqi L, Aphrodite K, Günter FR, Thierry R, Lin L, Michael T, Thierry C, Richard B, Jürgen B (2006) Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal 18:688–703. https://doi.org/10.1016/j.cellsig.2005.06.013

    Article  CAS  Google Scholar 

  7. Jon H, Peter H, Francis AO, Mark F, Janet ML (2015) N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways. Injury 46:975–984. https://doi.org/10.1016/j.injury.2015.03.028

    Article  Google Scholar 

  8. Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S (2018) Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol 6:69–80. https://doi.org/10.1016/S2213-8587(17)30186-9

    Article  PubMed  Google Scholar 

  9. Lu L, Ye X, Yao Q, Lu A, Zhao Z, Ding Y, Meng C, Yu W, Du Y, Cheng JL (2018) Egr2 enhances insulin resistance via JAK2/STAT3/SOCS-1 pathway in HepG2 cells treated with palmitate. Gen Comp Endocrinol 260:25–31. https://doi.org/10.1016/j.ygcen.2017.08.023

    Article  CAS  PubMed  Google Scholar 

  10. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, Copeland JK, Ahn J, Prescott D, Rasmussen BA, Chng MHY, Engleman EG, Girardin SE, Lam TKT, Croitoru K, Dunn S, Philpott DJ, Guttman DS, Woo M, Winer S, Winer DA (2015) Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21:527–542. https://doi.org/10.1016/j.cmet.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Ma H, Yuan J, Ma J, Ding J, Lin W, Wang X, Zhang M, Sun Y, Wu R, Liu C, Sun C, Gu Y (2019) BMP7 improves insulin signal transduction in the liver via inhibition of mitogen-activated protein kinases. J Endocrinol 243:97–110. https://doi.org/10.1530/JOE-18-0693

    Article  CAS  PubMed  Google Scholar 

  12. Misu H (2019) Identification of hepatokines involved in pathology of type 2 diabetes and obesity. Endocr J 66:659–662. https://doi.org/10.1507/endocrj.EJ19-0255

    Article  CAS  PubMed  Google Scholar 

  13. Ozaki KI, Awazu M, Tamiya M, Iwasaki Y, Harada A, Kugisaki S, Tanimura S, Kohno M (2016) Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J Physiol Endocrinol Metab 310:643–651. https://doi.org/10.1152/ajpendo.00445.2015

    Article  Google Scholar 

  14. Pan Y, Wang S, Su B, Zhou F, Zhang R, Xu T, Zhang R, Leventaki V, Drakos E, Liu W, Claret FX (2017) Stat3 contributes to Cancer progression by regulating Jab1/Csn5 expression. Oncogene 36:1069–1079. https://doi.org/10.1038/onc.2016.271

    Article  CAS  PubMed  Google Scholar 

  15. Su G, Sarbani G, Liyan Z, Joseph RS, Kyle SM, Brian NF, Gary DL, Andrew AB (2019) The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. J Biol Chem 294:13366–13377. https://doi.org/10.1074/jbc.RA119.008967

    Article  Google Scholar 

  16. Wang L, Zheng JN, Pei DS (2016) The emerging roles of Jab1/CSN5 in cancer. Med Oncol 33:90. https://doi.org/10.1007/s12032-016-0805-1

    Article  CAS  PubMed  Google Scholar 

  17. Wang YN, Jia T, Zhang J, Lan J, Zhang D, Xu X (2019) PTPN2 improves implant osseointegration in T2DM via inducing the dephosphorylation of ERK. Exp Biol Med 244:1493–1503. https://doi.org/10.1177/1535370219883419

    Article  CAS  Google Scholar 

  18. Wanida S, Supita T, Furoida M, Mayuree HT, Pilaiwanwadee H, Varomyalin T (2019) ECa 233 suppresses LPS-induced Proinflammatory responses in macrophages via suppressing ERK1/2, p38 MAPK and Akt pathways. Biol Pharm Bull 42:1358–1365. https://doi.org/10.1248/bpb.b19-00248

    Article  Google Scholar 

  19. Yu JH, Sung-E C, Ja YJ, Seung JH, Dae JK, Yup K, Kwan WL, Hae JK (2019) Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. J Diabetes Res 2019:4021623–4021611. https://doi.org/10.1155/2019/4021623

    Article  CAS  Google Scholar 

  20. Zhongbin D, Ruggero P, William C, Xiaoyu X, Shuangyin Z, Spandan VS, William G, Donald M, John M, Huang-Ge Z (2011) Plant homologue constitutive photomorphogenesis 9 (COP9) signalosome subunit CSN5 regulates innate immune responses in macrophages. Blood 117:4796–4804. https://doi.org/10.1182/blood-2010-10-314526

    Article  CAS  Google Scholar 

  21. Zhou F, Pan Y, Wei Y, Zhang R, Bai G, Shen Q, Meng S, Le XF, Michael A, Claret FX (2017) Jab1/Csn5-thioredoxin signaling in relapsed acute monocytic leukemia under oxidative stress. Clin Cancer Res 23:4450–4461. https://doi.org/10.1158/1078-0432.CCR-16-2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by Suzhou Science and Education Project (No. kjxw2018036) and Science and Technology Development Fund of Nanjing Medical University (NMUB2018218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• JAB1 plays a role in chronic inflammation.

• JAB1 knockdown has a protective effect on insulin sensitivity.

• We associate JAB1, ERK pathway with insulin resistance.

• JAB1 may act as a possible target for the treatment of T2DM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Ma, S., Hu, X. et al. JAB1 promotes palmitate-induced insulin resistance via ERK pathway in hepatocytes. J Physiol Biochem 76, 655–662 (2020). https://doi.org/10.1007/s13105-020-00770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00770-0

Keywords

Navigation