Skip to main content
Log in

Part I: Evaluation for Hardware Trojan Detection Based on Electromagnetic Radiation

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Hardware Trojan (HT) is increasingly becoming a major threat in the filed of hardware security. Recently, researchers are taking a high value on the side-channel countermeasures. Meanwhile, the electromagnetic radiation (EMR) based method is one of the most promising schemes to ensure whether integrated circuit (IC) is HT-infected or not. In this paper, we focus on the ability evaluation for existing EMR based methods to implement the HT detection. We propose the noise model based on analyses of noise sources during HT detection using EMR. Then, we study the effect caused by several types of noises in this model. According to these analyses, we discuss the limitation for EMR based methods in two special scenarios, and propose an evaluation scheme to evaluate the detection capability for using EMR analysis to identify HTs. Finally, we exemplify our scheme with some experiments. Experimental results on FPGA show the effectiveness of EMR based methods as well as their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar B (2007) Trojan detection using IC fingerprinting. In: 2007 IEEE symposium on security and privacy, proceedings, IEEE Comp Soc TCSP, IEEE symposium on security and privacy, IEEE symposium on security and privacy (S&P 2007), Berkeley, CA, May 20-23, 2007, p 296+, https://doi.org/10.1109/SP.2007.36

  2. Balasch J, Gierlichs B, Verbauwhede I (2015) Electromagnetic circuit fingerprints for hardware trojan detection. In: 2015 IEEE international symposium on electromagnetic compatibility (EMC), IEEE; EMC Soc; EMC europe; VDE; wurth elektronik; rohde & schwarz; huawei; EMCos; altair; AMETEK; ETS LINDGREN; albatross projects; nolato; airbus; thales; ANDRO; thyssenkrupp; AR, IEEE international symposium on electromagnetic compatibility,Joint IEEE international symposium on electromagnetic compatibility (EMC) And Emc Europe, Dresden, Germany, Aug 16-22, 2015, pp 246–251

  3. Banga M, Hsiao MS (2008) A region based approach for the identification of hardware Trojans. In: 2008 IEEE international workshop on hardware-oriented security and trust, IEEE, IEEE international workshop on hardware-oriented security and trust, Anaheim, CA, Jun 09, 2008, pp 40–47, https://doi.org/10.1109/HST.2008.4559047

  4. Beenakker C, Büttiker M (1992) Suppression of shot noise in metallic diffusive conductors. Phys Rev B 46(3):1889

    Article  Google Scholar 

  5. Bossuet L, Fischer V, Bayon P (2015) Contactless transmission of intellectual property data to protect fpga designs. In: 2015 IFIP/IEEE international conference on very large scale integration (VLSI-SOC), Int Federat Informat Proc TC 10 Working Grp 10 5; Inst Elect & Elect Engineers; Korea Adv Inst Sci & Technol; Seoul Natl Univ, Embedded Syst Res Ctr; IEEE Council Elect Design Automat; IEEE Circuits & Syst Soc; Korean Inst Informat Scientists & Engineers; ACM Special Interest Grp Design Automat, 23rd IFIP WG 10.5/IEEE international conference on very large scale integration (VLSI-SoC), Daejeon, South Korea, Oct 05-07, 2015, pp 19–24

  6. Cha B, Gupta SK (2012) Efficient trojan detection via calibration of process variations. In: 2012 IEEE 21st asian test symposium, pp 355–361, https://doi.org/10.1109/ATS.2012.64

  7. Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhunia S (2009) MERO: A statistical approach for hardware trojan detection. In: Clavier C, Gaj K (eds) Cryptographic hardware and embedded systems - CHES 2009, proceedings, int assoc cryptol res, lecture notes in computer science. 11th international workshop on cryptographic hardware and embedded systems, Lausanne, Switzerland, Sep 06-09, 2009, vol 5747, pp 396–410

  8. Chen Z, Guo S, Wang J, Li Y, Lu Z (2019) Toward FPGA security in IoT: a new detection technique for hardware trojans. IEEE Int Things J 6(4):7061–7068. https://doi.org/10.1109/JIOT.2019.2914079

    Article  Google Scholar 

  9. Daubechies I (1992) Ten lectures on wavelets. SIAM

  10. Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  Google Scholar 

  11. Gray RM, Neuhoff DL (1998) Quantization. IEEE Trans Inform Theor 44(6):2325–2383

    Article  Google Scholar 

  12. He J, Liu Y, Yuan Y, Hu K, Xia X, Zhao Y (2019) Golden chip free trojan detection leveraging electromagnetic side channel fingerprinting. IEICE Electronics Express 16(2), https://doi.org/10.1587/elex.16.20181065

  13. He J, Zhao Y, Guo X, Jin Y (2017) Hardware trojan detection through chip-free electromagnetic side-channel statistical analysis. IEEE Trans Very Large Scale Int (VLSI) Syst 25(10):2939–2948. https://doi.org/10.1109/TVLSI.2017.2727985

    Article  Google Scholar 

  14. Hou B, He C, Wang L, En Y, Xie S (2014) Hardware trojan detection via current measurement: a method immune to process variation effects. In: En YF, Ji CY (eds) Proceedings of 2014 10th international conference on reliability, maintainability and safety (ICRMS), VOLS I AND II, China Inst Elect (CIE); IEEE; CSAS; CMES; CICS; COS; CSA; CSAA, international conference on reliability maintainability and safety, 10th international conference on reliability maintainability and safety, chinese institute of electronics, Guangzhou, Peoples R China, Aug 06-08, 2014, pp 1039–1042

  15. Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique pp 163–172

  16. Lee EA, Messerschmitt DG (2012) Digital communication. Springer Science & Business Media, New York

    Google Scholar 

  17. Liu C, Cronin P, Yang C (2016) A mutual auditing framework to protect iot against hardware trojans. In: 2016 21st asia and south pacific design automation conference (ASP-DAC), Asia and south pacific design automation conference proceedings, 21st Asia and south pacific design automation conference (ASP-DAC), Macao, Peoples R China, Jan 25-28, 2016, pp 69–74

  18. Lundberg KH (2002) Noise sources in bulk cmos. Unpublished Paper 3:28

    Google Scholar 

  19. Mitra S, Wong HSP, Wong S (2015) The trojan-proof chip. IEEE Spectr 52(2):46–51. https://doi.org/10.1109/MSPEC.2015.7024511

    Article  Google Scholar 

  20. Mittal S (2016) A survey of architectural techniques for managing process variation. ACM Computing Surveys 48(4) https://doi.org/10.1145/2871167

  21. Ngo XT, Exurville I, Bhasin S, Danger JL, Guilley S, Najm Z, Rigaud JB, Robisson B (2015) Hardware trojan detection by delay and electromagnetic measurements. In: 2015 design, automation & test in europe conference & exhibition (DATE), european design & automation association; elect design automation consortium; IEEE council on elec design automation; european elect chips & Syst design initiative; ACM special interest Grp on design automation; Russian Acad of Sciences; IEEE Comp Soc test technology tech Council (tttC); IEEE solid-state circuits Soc (SSCS); international federation for information processing (IFIP); Ville De Grenoble; LETI; ST; MINALOGIC; Agence DEtudes et de Promotion de lIsere; Rhone Alpes; Grenoble Alpes; CMP; Systematic Paris Region Systems & ICT; Cluster SCC; JEITA; Synopsys; Mentor Graphics; Cadence; Mathworks; Eurotraining, design automation and test in europe conference and exhibition, conference on design automation test in Europe (DATE), alpexpo congress center, Grenoble, France, Mar 09-13, 2015, pp 782–787

  22. Notaros B (2011) Electromagnetics. Prentice Hall. https://books.google.com/books?id=alBXAAAACAAJ

  23. Proakis JG (2001) Digital signal processing: principles algorithms and applications. Pearson Education India, India

    Google Scholar 

  24. Qiu H, Luo C, Fang W, Jiang L (2018) Noncontact time-domain emi measurement of two adjacent traces on a pcb. In: 2018 IEEE symposium on electromagnetic compatibility, signal integrity and power integrity (EMC, SI & PI), IEEE; EMC Soc; ROHDE & SCHWARZ; Altair; AH Syst Inc; ANDRO; Bruce Archambeault; EMC Shop; ITG Magnet & EMI Filter; SPIRA; TDK, IEEE symposium on electromagnetic compatibility, signal integrity and power integrity (EMC, SI & PI), Long Beach, CA, Jul 30-Aug 03, 2018, pp 634–639

  25. Rai D, Lach J (2009) Performance of Delay-Based trojan detection techniques under parameter variations. In: 2009 IEEE international workshop on hardware-oriented security and trust, IEEE, IEEE international workshop on hardware-oriented security and trust, San Francisco, CA, Jul 27, 2009, pp 58–65, https://doi.org/10.1109/HST.2009.5224966

  26. Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: models, methods, and metrics. Proc IEEE 102((8, SI)):1283–1295. https://doi.org/10.1109/JPROC.2014.2335155

    Article  Google Scholar 

  27. Soell O, Korak T, Muehlberghuber M, Hutter M (2014) EM-based detection of hardware trojans on FPGAs. In: 2014 IEEE international symposium on hardware-oriented security and trust (Host), IEEE; IEEE Test Technol Tech Council; IEEE Comp Soc; IEEE Secur & Privacy Soc, IEEE international symposium on hardware-oriented security and trust (Host), Arlington, VA, May 06-07, 2014, pp 84–87

  28. Tang Y, Fang L, Li S (2019) Activity factor based hardware trojan detection and localization. J Electron Test-Theor Appl 35(3):293–302. https://doi.org/10.1007/s10836-019-05803-1

    Article  Google Scholar 

  29. Tang Y, Li S, Fang L, Hu X, Chen J (2019) Golden-chip-free hardware trojan detection through quiescent thermal maps. IEEE Trans Very Large Scale Int (VLSI) Syst 27(12):2872–2883. https://doi.org/10.1109/TVLSI.2019.2933441

    Article  Google Scholar 

  30. Tang Y, Li S, Zhang F, Fang L (2018) Thermal maps based HT detection using spatial projection transformation. IET Inform Secur 12(4):356–361. https://doi.org/10.1049/iet-ifs.2017.0354

    Article  Google Scholar 

  31. Tuzlukov V (2018) Signal processing noise. CRC Press, Boca Raton

    Book  Google Scholar 

  32. Yang K, Hicks M, Dong Q, Austin T, Sylvester D (2016) A2: analog malicious hardware. In: 2016 IEEE symposium on security and privacy (SP), IEEE; IEEE Comp soc IEEE symposium on security and privacy, pp 18–37, IEEE symposium on security and privacy (SP), San Jose, CA, MAY 23-25, 2016, https://doi.org/10.1109/SP.2016.10

  33. Zhang J, Fang L, Li L, Zhang Z (2015) A novel approach to detecting hardware trojan horses. In: 2015 8th international symposium on computational intelligence and design (ISCID), vol 1, IEEE Nanjing Computat Intelligence Chapter; Univ Bristol; Zhejiang Univ; Zhejiang Sci Tech Univ; Zhejiang Univ, Coll Comp Sci; IEEE Comp Soc, International Symposium on Computational Intelligence and Design, 8th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, Peoples R China, Dec 12-13, 2015, pp 43–46, https://doi.org/10.1109/ISCID.2015.32

  34. Zhou B, Zhang W, Thambipillai S, Jin JTK, Chaturvedi V, Luo T (2016) Cost-efficient acceleration of hardware trojan detection through fan-out cone analysis and weighted random pattern technique. IEEE Trans Comput-Aided Design Integrat Circ Syst 35(5):792–805. https://doi.org/10.1109/TCAD.2015.2460551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkang Tang.

Additional information

Responsible Editor: S. Bhunia

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Li, S., Tang, Y. et al. Part I: Evaluation for Hardware Trojan Detection Based on Electromagnetic Radiation. J Electron Test 36, 591–606 (2020). https://doi.org/10.1007/s10836-020-05905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-020-05905-1

Keywords

Navigation