Skip to main content
Log in

An isoform-specific pivot modulates the electron transfer between the flavin mononucleotide and heme centers in inducible nitric oxide synthase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Intraprotein interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme centers is an obligatory step in nitric oxide synthase (NOS) enzymes. An isoform-specific pivotal region near Leu406 in the heme domain of human inducible NOS (iNOS) was proposed to mediate the FMN-heme domain–domain alignment (J Inorg Biochem 153:186–196, 2015). The FMN-heme IET rate is a measure of the interdomain FMN/heme complex formation. In this work, the FMN-heme IET kinetics in the wild type (wt) human iNOS oxygenase/FMN (oxyFMN) construct were directly measured by laser flash photolysis with added synthetic peptide related to the pivotal region, in comparison with the wt construct alone. The IET rates were decreased by the iNOS HKL peptide in a dose-saturable fashion, and the inhibitory effect was abolished by a single L406 → E mutation in the peptide. A similar trend in change of the NO synthesis activity of wt iNOS holoenzyme by the peptides was observed. These data, along with the kinetics and modeling results for the L406T and L406F mutant oxyFMN proteins, indicated that the Leu406 residue modulates the FMN-heme IET through hydrophobic interactions. Moreover, the IET rates were analyzed for the wt iNOS oxyFMN protein in the presence of nNOS or eNOS-derived peptide related to the equivalent pivotal heme domain site. These results together indicate that the isoform-specific pivotal region at the heme domain specifically interacts with the conserved FMN domain surface, to facilitate proper interdomain docking for the FMN-heme IET in NOS.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

taken from molecular dynamics simulations [28]. The heme domain in the same subunit is in purple (and labeled Heme A), and the bound CaM is green. Note that the FMN domain docks to the heme domain (light blue) of the other subunit (labeled Heme B) to allow for the inter-subunit FMN-heme IET. The heme and FMN cofactors are displayed in ball and stick. b A close-up view of the pivotal residues displayed in stick. c Sequence alignment of the pivotal regions in the three NOS isoforms. Note that the pivotal residues HKL in human iNOS heme domain (highlighted in purple) differs among the NOS isoforms (RKT and RTT for nNOS and eNOS, respectively), while the pairing residues in the FMN domain (e.g., E661, L662, Q665, E666 in human iNOS) are conserved (colored in orange)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

NOS:

NO synthase

iNOS:

Inducible NOS

nNOS:

Neuronal NOS

eNOS:

Endothelial NOS

IET:

Intraprotein interdomain electron transfer

CaM:

Calmodulin

dRF:

5-Deazariboflavin

H4B:

6R-5,6,7,8-Tetrahydrobiopterin

l-Arg:

l-arginine

oxyFMN:

A truncated bi-domain oxygenase/FMN construct of NOS that consists of only the heme-containing oxygenase domain and the FMN domain, along with the CaM-binding linker in between the two domains

References

  1. Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stuehr DJ, Haque MM (2019) Br J Pharmacol 176:177–188

    CAS  PubMed  Google Scholar 

  3. Zhu Y, Silverman RB (2008) Biochemistry 47:2231–2243

    CAS  PubMed  Google Scholar 

  4. Lang J, Santolini J, Couture M (2011) Biochemistry 50:10069–10081

    CAS  PubMed  Google Scholar 

  5. Leferink NGH, Hay S, Rigby SEJ, Scrutton NS (2015) FEBS J 282:3016–3029

    CAS  PubMed  Google Scholar 

  6. Li J, Zheng H, Feng C (2018) Front Biosci (Landmark Edn) 23:1803–1821

    CAS  Google Scholar 

  7. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) J Biol Chem 279:36167–36170

    CAS  PubMed  Google Scholar 

  8. Feng C (2012) Coord Chem Rev 256:393–411

    CAS  PubMed  Google Scholar 

  9. Hedison TM, Hay S, Scrutton NS (2017) Nitric Oxide 63:61–67

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo S, Lei H, Qin H, Xia Y (2014) Curr Pharm Des 20:3548–3553

    CAS  PubMed  Google Scholar 

  11. Zweier JL, Chen C-A, Druhan LJ (2011) Antioxid Redox Signal 14:1769–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BSS, Karoui H, Tordo P, Pritchard KA (1998) Proc Natl Acad Sci USA 95:9220–9225

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen CA, Druhan LJ, Varadharaj S, Chen YR, Zweier JL (2008) J Biol Chem 283:27038–27047

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng H, Li J, Feng C (2020) FEBS Lett 594:2904–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tejero J, Hunt AP, Santolini J, Lehnert N, Stuehr DJ (2019) J Biol Chem 294:7904–7916

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hedison TM, Leferink NGH, Hay S, Scrutton NS (2016) ACS Catalysis 6:5170–5180

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lang J, Maréchal A, Couture M, Santolini J (2016) Biophys J 111:2099–2109

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bignon E, Rizza S, Filomeni G, Papaleo E (2019) Comput Struct Biotechnol J 17:415–429

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Robinet JJ, Cho K-B, Gauld JW (2008) J Am Chem Soc 130:3328–3334

    CAS  PubMed  Google Scholar 

  20. de Visser SP, Tan LS (2008) J Am Chem Soc 130:12961–12974

    PubMed  Google Scholar 

  21. Cho KB, Derat E, Shaik S (2007) J Am Chem Soc 129:3182–3188

    CAS  PubMed  Google Scholar 

  22. Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA, Getzoff ED (2004) J Biol Chem 279:37918–37927

    CAS  PubMed  Google Scholar 

  23. Feng CJ, Tollin G, Hazzard JT, Nahm NJ, Guillemette JG, Salerno JC, Ghosh DK (2007) J Am Chem Soc 129:5621–5629

    CAS  PubMed  Google Scholar 

  24. Feng CJ, Tollin G, Holliday MA, Thomas C, Salerno JC, Enemark JH, Ghosh DK (2006) Biochemistry 45:6354–6362

    CAS  PubMed  Google Scholar 

  25. Ghosh DK, Salerno JC (2003) Front Biosci 8:D193–D209

    CAS  PubMed  Google Scholar 

  26. Astashkin AV, Li J, Zheng H, Feng C (2019) J Phys Chem A 123:7075–7086

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Zheng H, Feng C (2019) Biochemistry 58:3087–3096

    CAS  PubMed  Google Scholar 

  28. Sheng Y, Zhong L, Guo D, Lau G, Feng C (2015) J Inorg Biochem 153:186–196

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Zheng H, Wang W, Miao Y, Sheng Y, Feng C (2018) FEBS Lett 592:2425–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghosh DK, Holliday MA, Thomas C, Weinberg JB, Smith SME, Salerno JC (2006) J Biol Chem 281:14173–14183

    CAS  PubMed  Google Scholar 

  31. Feng CJ, Dupont A, Nahm N, Spratt D, Hazzard JT, Weinberg J, Guillemette J, Tollin G, Ghosh DK (2009) J Biol Inorg Chem 14:133–142

    CAS  PubMed  Google Scholar 

  32. Ilagan RP, Tejero JS, Aulak KS, Ray SS, Hemann C, Wang Z-Q, Gangoda M, Zweier JL, Stuehr DJ (2009) Biochemistry 48:3864–3876

    CAS  PubMed  Google Scholar 

  33. Li W, Fan W, Elmore BO, Feng C (2011) FEBS Lett 585:2622–2626

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li W, Chen L, Fan W, Feng C (2012) FEBS Lett 586:159–162

    CAS  PubMed  Google Scholar 

  35. Panda SP, Li W, Venkatakrishnan P, Chen L, Astashkin AV, Masters BSS, Feng C, Roman LJ (2013) FEBS Lett 587:3973–3978

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  37. Shapovalov MV, Dunbrack RL (2011) Structure 19:844–858

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Astashkin AV, Feng C (2015) J Phys Chem A 119:11066–11075

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tejero J, Hannibal L, Mustovich A, Stuehr DJ (2010) J Biol Chem 285:27232–27240

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li W, Chen L, Lu C, Elmore BO, Astashkin AV, Rousseau DL, Yeh S-R, Feng C (2013) Inorg Chem 52:4795–4801

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith BC, Underbakke ES, Kulp DW, Schief WR, Marletta MA (2013) Proc Natl Acad Sci USA 110:E3577–E3586

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (GM081811 and GM133973 to C.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjian Feng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2020_1824_MOESM1_ESM.pdf

Supplementary file1 Primers for constructing the iNOS mutants; the FMN-heme IET and NO production rates of human iNOS proteins in the presence of the synthetic peptide. (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Li, J. & Feng, C. An isoform-specific pivot modulates the electron transfer between the flavin mononucleotide and heme centers in inducible nitric oxide synthase. J Biol Inorg Chem 25, 1097–1105 (2020). https://doi.org/10.1007/s00775-020-01824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01824-w

Keyword

Navigation