Skip to main content
Log in

Adaptive Interval Type-2 Fuzzy Fixed-time Control for Underwater Walking Robot with Error Constraints and Actuator Faults Using Prescribed Performance Terminal Sliding-mode Surfaces

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Underwater walking robot (UWR) is a kind of autonomous underwater vehicles which can walk underwater. In this work, the fixed-time tracking control problem of UWR with external disturbances, error constraints, and actuator faults is investigated. An interval type-2 fuzzy neural network approximator is designed to tackle nonlinear uncertainties, and a novel prescribed performance terminal sliding-mode surface is proposed to handle error constraints. Furthermore, two fault-tolerant controllers are given, where one is nonsingular and the other has higher steady-state precision. According to Lyapunov theory, the proposed controllers can guarantee that system states will converge to the expected values in a fixed time. Simulation results demonstrate the effectiveness of the proposed control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shukla, A., Karki, H.: Application of robotics in offshore oil and gas industry—a review Part II. Robot. Auton. Syst. 75, 508–524 (2016)

    Google Scholar 

  2. Howe, J.A., Husum, K., Inall, M.E., et al.: Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western Svalbard. Mar. Geol. 417, 106009 (2019)

    Google Scholar 

  3. Palomer, A., Ridao, P., Ribas, D.: Inspection of an underwater structure using point-cloud SLAM with an AUV and a laser scanner. J. Field. Robot. 36(8), 1333–1344 (2019)

    Google Scholar 

  4. Picardi, G., Laschi, C., Calisti, M.: Model-based open loop control of a multigait legged underwater robot. Mechatronics 55, 162–170 (2018)

    Google Scholar 

  5. Yoo, S., Shim, H., Jun, B.H., et al.: Design of walking and swimming algorithms for a multi-legged underwater robot crabster CR200. Mar. Technol. Soc. J. 50(5), 74–87 (2016)

    Google Scholar 

  6. Li, Z., Yang, C., Ding, N., et al.: Robust adaptive motion control for underwater remotely operated vehicles with velocity constraints. Int. J. Control Autom. Syst. 10(2), 421–429 (2012)

    Google Scholar 

  7. Ghommam, J., Ferik, S.E., Saad, M.: Robust adaptive path-following control of underactuated marine vessel with off-track error constraint. Int. J. Syst. Sci. 49(7), 1540–1558 (2018)

    MathSciNet  Google Scholar 

  8. Gao, Z., Guo, G.: Velocity free leader-follower formation control for autonomous underwater vehicles with line-of-sight range and angle constraints. Inf. Sci. 486, 359–378 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Qin, H., Li, C., Sun, Y., et al.: Adaptive trajectory tracking algorithm of unmanned surface vessel based on anti-windup compensator with full-state constraints. Ocean Eng. 200, 106906 (2020)

    Google Scholar 

  10. Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE. T. Cybern. 46(3), 609–619 (2016)

    Google Scholar 

  11. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE. Trans. Autom. Control. 64(7), 3046–3053 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Wang, Z., Liang, B., Sun, Y., et al.: Adaptive fault-tolerant prescribed-time control for teleoperation systems with position error constraints. IEEE Trans. Ind. Inform. 16(7), 4889–4899 (2020)

    Google Scholar 

  13. Zheng, Z., Ruan, L., Zhu, M.: Output-constrained tracking control of an underactuated autonomous underwater vehicle with uncertainties. Ocean. Eng. 175, 241–250 (2019)

    Google Scholar 

  14. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE. Trans. Fuzzy Syst. 26(2), 869–883 (2017)

    Google Scholar 

  15. Gundogdu, F.K., Kahraman, C.: A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Eng. Appl. Artif. Intell. 85, 307–323 (2019)

    Google Scholar 

  16. Wu, Z., Karimi, H.R., Dang, C.: An approximation algorithm for graph partitioning via deterministic annealing neural network. Neural Netw. 117, 191–200 (2019)

    MATH  Google Scholar 

  17. Wu, Z., Karimi, H.R., Dang, C.: A deterministic annealing neural network algorithm for the minimum concave cost transportation problem. IEEE. Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/tnnls.2019.2955137

    Article  Google Scholar 

  18. Zhang, Z., Wu, Y.: Adaptive fuzzy tracking control of autonomous underwater vehicles with output constraints. IEEE. Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2967294

    Article  Google Scholar 

  19. Lin, T.C.: Observer-based robust adaptive interval type-2 fuzzy tracking control of multivariable nonlinear systems. Eng. Appl. Artif. Intell. 23(3), 386–399 (2010)

    Google Scholar 

  20. Moezi, S.A., Zakeri, E., Eghtesad, M.: Optimal adaptive interval type-2 fuzzy fractional-order backstepping sliding mode control method for some classes of nonlinear systems. ISA. Trans. 93, 23–39 (2019)

    Google Scholar 

  21. Golsefid, S.M., Zarandi, M.H., Turksen, I.B., et al.: Multi-central general type-2 fuzzy clustering approach for pattern recognitions. Inf. Sci. 328, 172–188 (2016)

    MATH  Google Scholar 

  22. Castillo, O., Melin, P., Ontiveros, E., et al.: A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Eng. Appl. Artif. Intell. 85, 666–680 (2019)

    Google Scholar 

  23. Wu, D., Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)

    Google Scholar 

  24. Kumbasar, T.: Robust Stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 24(3), 675–694 (2016)

    Google Scholar 

  25. Yang, L., Liu, Z., Chen, Y., et al.: Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm. ISA Trans. 87, 143–153 (2019)

    Google Scholar 

  26. Dian, S., Hu, Y., Zhao, T., et al.: Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximator. Nonlinear. Dyn. 97(2), 1567–1580 (2019)

    MATH  Google Scholar 

  27. Dong, H., Gao, L., Shen, P., et al.: An interval type-2 fuzzy logic controller design method for hydraulic actuators of a human-like robot by using improved drone squadron optimization. Int. J. Adv. Robot. Syst. 16(6), 1729881419891553 (2019)

    Google Scholar 

  28. Ruizgarcia, G., Hagras, H., Pomares, H., et al.: Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets. IEEE. Trans. Fuzzy. Syst. 27(12), 2381–2395 (2019)

    Google Scholar 

  29. Lu, X., Zhao, Y., Liu, M., et al.: Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot. Neurocomputing. 283, 107–119 (2017)

    Google Scholar 

  30. Zhao, T., Yu, Q., Dian, S., et al.: Non-singleton general type-2 fuzzy control for a two-wheeled self-balancing robot. Int. J. Fuzzy Syst. 21(6), 1724–1737 (2019)

    MathSciNet  Google Scholar 

  31. Taghavifar, H., Rakheja, S.: Path-tracking of autonomous vehicles using a novel adaptive robust exponential-like-sliding-mode fuzzy type-2 neural network controller. Mech. Syst. Signal Proc. 130, 41–55 (2019)

    Google Scholar 

  32. Liao, T., Chan, W.S., Yan, J.J., et al.: Distributed adaptive dynamic surface formation control for uncertain multiple quadrotor systems with interval type-2 fuzzy neural networks. Trans. Inst. Meas. Control. 41(7), 1861–1879 (2019)

    Google Scholar 

  33. Zhao, T., Chen, Y., Dian, S., et al.: General type-2 fuzzy gain scheduling PID controller with application to power-line inspection robots. Int. J. Fuzzy Syst. 22(1), 181–200 (2020)

    Google Scholar 

  34. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Bechlioulis, C.P., Rovithakis, G.A.: Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE. Trans. Autom. Control 55(5), 1220–1226 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Bechlioulis, C.P., Karras, G.C., Heshmati-Alamdari, S., et al.: Trajectory tracking with prescribed performance for underactuated underwater vehicles under model uncertainties and external disturbances. IEEE. Trans. Control Syst. Technol. 25(2), 429–440 (2016)

    Google Scholar 

  37. Elhaki, O., Shojaei, K.: Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance. Ocean. Eng. 167, 239–256 (2018)

    Google Scholar 

  38. Li, J., Du, J., Sun, Y., et al.: Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance. Int. J. Robust. Nonlinear. Control 29(14), 4629–4643 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Shen, C., Shi, Y., Buckham, B.: Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE. Trans. Ind. Electron. 65(7), 5796–5805 (2017)

    Google Scholar 

  40. Mahapatra, S., Subudhi, B.: Design and experimental realization of a backstepping nonlinear H∞ control for an autonomous underwater vehicle using a nonlinear matrix inequality approach. Trans. Inst. Meas. Control. 40(11), 3390–3403 (2018)

    Google Scholar 

  41. Wang, J., Wang, C., Wei, Y., et al.: Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space. Ocean. Eng. 180, 175–186 (2019)

    Google Scholar 

  42. Wu, Z., Jiang, B., Kao, Y.: Finite-time H filtering for Itô stochastic Markovian jump systems with distributed time-varying delays based on optimisation algorithm. IET. Contr. Theory. Appl. 13(5), 702–710 (2019)

    MATH  Google Scholar 

  43. Xu, R., Tang, G., Han, L., et al.: Robust finite-time attitude tracking control of a CMG-based AUV with unknown disturbances and input saturation. IEEE. Access. 7, 56409–56422 (2019)

    Google Scholar 

  44. Patre, B.M., Londhe, P.S., Waghmare, L.M., et al.: Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle. Ocean. Eng. 159, 372–387 (2018)

    Google Scholar 

  45. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica. 51, 332–340 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Corradini, M.L., Cristofaro, A.: Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees. Automatica. 95, 561–565 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Gao, Z., Guo, G.: Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications. IEEE Access. 6, 27902–27911 (2018)

    Google Scholar 

  49. Kadiyam, J., Parashar, A., Mohan, S., et al.: Actuator fault-tolerant control study of an underwater robot with four rotatable thrusters. Ocean Eng. 197, 106929 (2020)

    Google Scholar 

  50. Sun, Y., Ran, X., Li, Y., et al.: Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles. Int. J. Nav. Archit. Ocean Eng. 8(3), 243–251 (2016)

    Google Scholar 

  51. Zeghlache, S., Djerioui, A., Benyettou, L., et al.: Fault tolerant control for modified quadrotor via adaptive type-2 fuzzy backstepping subject to actuator faults. ISA Trans. 87, 330–345 (2019)

    Google Scholar 

  52. Liu, X., Zhang, M., Yao, F.: Adaptive fault tolerant control and thruster fault reconstruction for autonomous underwater vehicle. Ocean Eng. 155, 10–23 (2018)

    Google Scholar 

  53. Xu R, Tang G, Huang D, et al.: Adaptive fault-tolerant attitude control for a CMG-based underwater vehicle. J. Mar. Sci. Technol. 1–8 (2019)

  54. Qin, H., Chen, H., Sun, Y., et al.: Distributed finite-time fault-tolerant containment control for multiple ocean Bottom Flying node systems with error constraints. Ocean. Eng. 189, 106341 (2019)

    Google Scholar 

  55. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE. Trans. Control. Syst. Technol. 24(5), 1892–1898 (2016)

    Google Scholar 

  56. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica. 54, 305–309 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant (Nos. U1713205 and 61803119) and the Research Fund from Science and Technology on Underwater Vehicle Laboratory under Grant (No. 6142215180208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Yang, H., Sun, Y. et al. Adaptive Interval Type-2 Fuzzy Fixed-time Control for Underwater Walking Robot with Error Constraints and Actuator Faults Using Prescribed Performance Terminal Sliding-mode Surfaces. Int. J. Fuzzy Syst. 23, 1137–1149 (2021). https://doi.org/10.1007/s40815-020-00949-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00949-z

Keywords

Navigation