Skip to main content
Log in

Interval Type-2 Fuzzy Cognitive Map-Based Flight Control System for Quadcopters

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel Interval Type-2 (IT2) Fuzzy Cognitive Map (FCM)-based flight control system to solve the altitude, attitude and position control problems of quadcopters. The proposed IT2-FCM encompasses all concepts related to drone for a satisfactory path-tracking and stabilizing control performance. The degree of mutual influences of the concepts is designed with opinions of three experts that take account the dynamics of drone and rules governing proportional integral derivative (PID) controllers. To model the inter-uncertainty of the experts’ opinions, IT2 fuzzy logic systems are utilized as they are powerful tools to model high level of uncertainties. Thus, the proposed IT2-FCM has a qualitative representation as it merges the advantages of IT2 fuzzy logic systems and FCMs. We present comparative simulations results in presence of uncertainties where the superiority of the proposed IT2-FCM-based flight control system is shown in comparison with its type-1 fuzzy counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Senthilnath, J., Dokania, A., Kandukuri, M., Ramesh, K.N., Anand, G., Omkar, S.N.: Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosyst. Eng. 146, 16–32 (2016)

    Article  Google Scholar 

  2. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81(4), 281–330 (2015)

    Article  Google Scholar 

  3. Kanistras, K., Martins, G., Rutherford, M.J., Valavanis, K.P.: A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA (2013)

  4. Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst. Mag. 25(6), 45–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nascimento, T.P., Saska, M.: Position and attitude control of multi-rotor aerial vehicles: a survey. Ann. Rev. Control (2019)

  6. Zouaoui, S., Mohamed, E., Kouider, B.: Easy tracking of UAV using PID controller. Periodica Polytechnica Transp. Eng. 47(3), 171–177 (2019)

    Article  Google Scholar 

  7. Erginer, B., Altuğ, E.: Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle. Int. J. Control Autom. Syst. 10(1), 61–70 (2012)

    Article  Google Scholar 

  8. Dong, N., Zhang, W.-Q., Gao, Z.-K.: Research on fuzzy PID shared control method of small brain-controlled uav. arXiv preprint arXiv:1905.12240 (2019)

  9. Jebelli, A., E. Yagoub, M.C., Dhillon, B.S.: Feedback linearization approach to fault tolerance for a micro quadrotor. In: IEEE International Conference on Industrial Technology (ICIT), Lyon, France, pp. 165–168 (2018)

  10. Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Process. 129, 531–545 (2019)

    Article  Google Scholar 

  11. Poultney, A., Gong, P., Ashrafiuon, H.: Integral backstepping control for trajectory and yaw motion tracking of quadrotors. Robotica 37(2), 300–320 (2019)

    Article  Google Scholar 

  12. Mokhtari, M.R., Cherki, B.: A new robust control for minirotorcraft unmanned aerial vehicles. ISA Trans. 56, 86–101 (2015)

    Article  Google Scholar 

  13. Castillo, A., Sanz, R., Garcia, P., Qiu, W., Wang, H., Xu, C.: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers. Control Eng. Pract. 82, 14–23 (2019)

    Article  Google Scholar 

  14. Zhou, J., Cheng, Y., Du, H., Wu, D., Zhu, M., Lin, X.: Active finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturation. J. Frank. Inst. In Press (2019)

  15. Lotufo, M.A., Colangelo, L., Perez-Montenegro, C., Canuto, E., Novara, C.: UAV quadrotor attitude control: an ADRC-EMC combined approach. Control Eng. Pract. 84, 13–22 (2019)

    Article  Google Scholar 

  16. Jing, Q., Chang, Z., Chu, H., Shao, Y., Zhang, X.: Quadrotor attitude control based on fuzzy sliding mode control theory. In: Chinese Control Conference (CCC), Guangzhou, China, pp. 8360–8364 (2019)

  17. Nazaruddin, Y.Y., Andrini, A.D., Anditio, B.: PSO based PID Controller for quadrotor with virtual sensor. IFAC-Pap. OnLine 51(4), 358–363 (2018)

    Article  Google Scholar 

  18. Zhang, Y., Chen, Z., Zhang, X., Sun, Q., Sun, M.: A novel control scheme for quadrotor UAV based upon active disturbance rejection control. Aerosp. Sci. Technol. 79, 601–609 (2018)

    Article  Google Scholar 

  19. Zou, Y., Zhu, B.: Adaptive trajectory tracking controller for quadrotor systems subject to parametric uncertainties. J. Frankl. Inst. 354(15), 6724–6746 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosaldo-Serrano, M.A., Aranda-Bricaire, E.: Trajectory tracking for a commercial quadrotor via time-varying backstepping. IFAC-Pap. OnLine 51(13), 532–536 (2018)

    Article  Google Scholar 

  21. Okyere, E., Bousbaine, A., Poyi, G.T., Joseph, A.K., Andrade, J.M.: LQR controller design for quad-rotor helicopters. J. Eng. 2019(17), 4003–4007 (2019)

    Google Scholar 

  22. Bangura, M., Mahony, R.: Real-time model predictive control for quadrotors. IFAC Proc. Vol. 47(3), 11773–11780 (2014)

    Article  Google Scholar 

  23. Santoso, F., Garratt, M.A., Anavatti, S.G.: Hybrid PD-fuzzy and PD controllers for trajectory tracking of a quadrotor unmanned aerial vehicle: autopilot designs and real-time flight tests. IEEE Trans. Syst. Man Cybern. Syst. Early Access 1–13 (2019)

  24. Zhang, J., Ren, Z., Deng, C., Wen, B.: Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs. Nonlinear Dyn. 97(1), 609–627 (2019)

    Article  Google Scholar 

  25. Housny, H., Chater, E.A., Fadil, H.E.: Fuzzy PID control tuning design using particle swarm optimization algorithm for a quadrotor. In: International Conference on Optimization and Applications (ICOA), Kenitra, Morocco (2019)

  26. Matraji, I., Al-Durra, A., Haryono, A., Al-Wahedi, K., Abou-Khousa, M.: Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control. Control Eng. Pract. 72, 167–176 (2018)

    Article  Google Scholar 

  27. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231 (1996)

    Article  Google Scholar 

  28. Amirkhani, A., Shirzadeh, M., Papageorgiou, E.L., Mosavi, M.R.: Visual-based quadrotor control by means of fuzzy cognitive maps. ISA Trans. 60, 128–142 (2016)

    Article  Google Scholar 

  29. Hatwágner, M.F., Yesil, E., Dodurka, M.F., Papageorgiou, E.I., Urbas, L., Kóczy, L.T.: Two-stage learning based fuzzy cognitive maps reduction approach. IEEE Trans. Fuzzy Syst. 26(5), 2938–2952 (2018)

    Article  Google Scholar 

  30. Yeap, W.K., Wong, C.K., Schmidt, J.: Using a mobile robot to test a theory of cognitive mapping. Springer Tracts in Advanced Robotics, pp. 281–295. Springer, Berlin (2008)

    Google Scholar 

  31. Motlagh, O.: An FCM-based design for balancing of legged robots. J. Artif. Intell. 4(4), 295–299 (2011)

    Article  Google Scholar 

  32. Vaščák, J., Michna, R.: Learning of fuzzy cognitive maps by a PSO algorithm for movement adjustment of robots. Advances in Intelligent Systems and Computing, pp. 155–162. Springer International Publishing, Berlin (2015)

    Google Scholar 

  33. Wang, B., Zhang, Y.: Fuzzy Adaptive fault-tolerant control for quadrotor helicopter. In: International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA 2017, pp. 945–950

  34. Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2965890

    Article  Google Scholar 

  35. Osoba, O., Kosko, B.: Causal modeling with feedback fuzzy cognitive maps. In: Davis, P.K., O’Mahony, A., Pfautz, J. (eds.) Social-Behavioral Modeling for Complex Systems, pp. 587–593. Wiley, New York (2019)

    Chapter  Google Scholar 

  36. Amirkhani, A., Shirzadeh, M., Shojaeefard, M.H., Abraham, A.: Controlling wheeled mobile robot considering the effects of uncertainty with neuro-fuzzy cognitive map. ISA Trans. 100, 454–468 (2020). https://doi.org/10.1016/j.isatra.2019.12.011

    Article  Google Scholar 

  37. Konti, A., Damigos, D.: Exploring strengths and weaknesses of bioethanol production from bio-waste in Greece using Fuzzy Cognitive Maps. Energy Policy 112, 4–11 (2018)

    Article  Google Scholar 

  38. Amirkhani, A., Kolahdoozi, M., Wang, C., Kurgan, L.: Prediction of DNA-binding residues in local segments of protein sequences with Fuzzy Cognitive Maps. IEEE/ACM Trans. Comput. Biol. Bioinform. 17(4), 1372–1382 (2020)

    Google Scholar 

  39. Mendel, J.M.: Type-2 fuzzy sets as well as computing with words. IEEE Comput. Intell. Mag. 14(1), 82–95 (2019)

    Article  Google Scholar 

  40. Hamza, M.F., Yap, H.J., Choudhury, I.A., Chiroma, H., Kumbasar, T.: A survey on advancement of hybrid type 2 fuzzy sliding mode control. Neural Comput. Appl. 30(2), 331–353 (2018)

    Article  Google Scholar 

  41. Wu, D., Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)

    Article  Google Scholar 

  42. Mendel, J.M.: Type-2 fuzzy sets. Uncertain Rule-Based Fuzzy Systems, pp. 259–306. Springer, Cham (2017)

    Chapter  Google Scholar 

  43. Kumbasar, T., Hagras, H.: Interval type-2 fuzzy PID controllers. Springer Handbook of Computational Intelligence, pp. 285–294. Springer, Berlin (2015)

    Chapter  Google Scholar 

  44. Wang, J., Kumbasar, T.: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods. IEEE/CAA J. Autom. Sin. 6(1), 247–257 (2019)

    Article  Google Scholar 

  45. Beke, A., Kumbasar, T.: Learning with type-2 fuzzy activation functions to improve the performance of deep neural networks. Eng. Appl. Artif. Intell. 85, 372–384 (2019)

    Article  Google Scholar 

  46. Lilly, J.H.: Fuzzy control and identification. Wiley, New York (2011)

    MATH  Google Scholar 

  47. Wang, L.-X.: A course in fuzzy systems and control. Prentice-Hall Inc, Upper Saddle River (1996)

    Google Scholar 

  48. Amirkhani, A., Mosavi, M.R., Naimi, A.: Unsupervised fuzzy cognitive map in diagnosis of breast epithelial lesions. In: proc. IEEE, 22nd Iranian conference on biomedical engineering (ICBME 2015), pp. 111–115. Tehran, Iran (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Amirkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhani, A., Shirzadeh, M. & Kumbasar, T. Interval Type-2 Fuzzy Cognitive Map-Based Flight Control System for Quadcopters. Int. J. Fuzzy Syst. 22, 2504–2520 (2020). https://doi.org/10.1007/s40815-020-00940-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00940-8

Keywords

Navigation