Skip to main content
Log in

Adaptive Leader–Follower Formation for Unmanned Surface Vehicles Subject to Output Constraints

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses the leader–follower formation control strategy for unmanned surface vehicles with model uncertainties. First, to achieve the desired formation configuration, the line-of-sight (LOS) scheme is incorporated in the guidance design. The constraints of LOS range and angle are required to meet the connectivity maintenance and collision avoidance. Tan-type time-varying Barrier Lyapunov function (BLF) is applied to address the output constraints. Next, in the formation control design, bioinspired models are combined with backstepping techniques to achieve less calculation. Adaptive fuzzy control approach is developed to deal with the uncertainties of marine vessels due to their superior approximation capability. Finally, the uniform ultimate boundedness of all signals can be guaranteed via stability analysis. Simulation examples are carried out to demonstrate the feasibility of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghommam, J., Saad, M.: Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints. IEEE Trans. Vehicular Technol. 67(2), 852–865 (2017)

    Article  Google Scholar 

  2. Shojaei, K.: Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque. Ocean Eng. 105, 196–205 (2015)

    Article  Google Scholar 

  3. Zhang, J.X., Yang, G.H.: Fault-tolerant leader-follower formation control of marine surface vessels with unknown dynamics and actuator faults. Int. J. Robust Nonlin. Control 28(14), 4188–4208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jin, X.: Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jin, X.: Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control[J]. IEEE Trans. Cybern. 49(5), 1748–1758 (2018)

    Article  Google Scholar 

  6. Wang, Ning: Choon Ki Ahn, Hyperbolic-tangent LOS guidance-based finite-time path following of underactuated marine vehicles. IEEE Trans. Ind. Electronics (2019). https://doi.org/10.1109/TIE.2019.2947845

    Article  Google Scholar 

  7. Dai, S.L., He, S., Lin, H., et al.: Platoon formation control with prescribed performance guarantees for USVs. IEEE Trans. Ind. Electronics 65(5), 4237–4246 (2017)

    Article  Google Scholar 

  8. Dai, S.L., He, S., Wang, M., et al.: Adaptive neural control of underactuated surface vessels with prescribed performance guarantees. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3686–3698 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mech. 22(6), 2564–2575 (2017)

    Article  Google Scholar 

  10. Park, B.S., Yoo, S.J.: Robust fault-tolerant tracking with predefined performance for underactuated surface vessels. Ocean Eng. 115, 159–167 (2016)

    Article  Google Scholar 

  11. He, W., Yin, Z., Sun, C.: Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function. IEEE Trans. Cybern. 47(7), 1641–1651 (2016)

    Article  Google Scholar 

  12. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22(4), 1536–1543 (2013)

    Google Scholar 

  13. Xia, G., Sun, C., Zhao, B., et al.: Neuroadaptive distributed output feedback tracking control for multiple marine surface vessels with input and output constraints. IEEE Access 7, 123076–123085 (2019)

    Article  Google Scholar 

  14. Oh, S.R., Sun, J.: Path following of underactuated marine surface vessels using line-of-sight based model predictive control. Ocean Eng. 37(2–3), 289–295 (2010)

    Article  Google Scholar 

  15. Li, Z., Sun, J.: Disturbance compensating model predictive control with application to ship heading control. IEEE Trans. Control Syst. Technol. 20(1), 257–265 (2011)

    Google Scholar 

  16. Wu, Z., Karimi, H.R., Dang, C.: A deterministic annealing neural network algorithm for the minimum concave cost transportation problem. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2955137

    Article  Google Scholar 

  17. Wang, N., Su, S.F., Yin, J., et al.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2017)

    Article  Google Scholar 

  18. Sun, W., Su, S.F., Wu, Y., et al.: Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. 50(8), 3424–3432 (2019)

    Article  Google Scholar 

  19. Tong, S., Li, Y., Li, Y., et al.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(6), 1693–1704 (2011)

    Article  Google Scholar 

  20. Liu, H., Pan, Y., Li, S., et al.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2209–2217 (2017)

    Article  Google Scholar 

  21. Zou, A.M., Hou, Z.G., Tan, M.: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16(4), 886–897 (2008)

    Article  Google Scholar 

  22. Liu, C., Chen, C.L.P., Zou, Z., et al.: Adaptive NN-DSC control design for path following of underactuated surface vessels with input saturation. Neurocomputing 267, 466–474 (2017)

    Article  Google Scholar 

  23. Zeng, J., Wan, L., Li, Y., et al.: Robust composite neural dynamic surface control for the path following of unmanned marine surface vessels with unknown disturbances. Int. J. Adv. Robotic Syst. 15(4), 1729881418786646 (2018)

    Google Scholar 

  24. Ren, J., Liu, L.: Adaptive neural network control for ship steering system using filtered backstepping design. J. Appl. Sci. 13(10), 1691–1697 (2013)

    Article  Google Scholar 

  25. Jin, Z., Zhang, W., Liu, S., et al.: Command-Filtered backstepping integral sliding mode control with prescribed performance for ship roll stabilization. Appl. Sci. 9(20), 4288 (2019)

    Article  Google Scholar 

  26. Pan, C.Z., Lai, X.Z., Yang, S.X., et al.: Bioinspired neurodynamics based position-tbracking control of hovercraft vessels. Int. J. Robotics Automation 28(3), 269–276 (2013)

    Article  Google Scholar 

  27. Yang, S.X., Zhu, A., Yuan, G., et al.: A bioinspired neurodynamics-based approach to tracking control of mobile robots. IEEE Trans. Ind. Electronics 59(8), 3211–3220 (2011)

    Article  Google Scholar 

  28. Tami, Y., Melbous, A., Guessoum, A.: Backstepping approach and Bio-Inspired model based hybrid sliding-mode tracking control for Airship. Int. J. Control Syst. Robotics 2, 103–110 (2017)

    Google Scholar 

  29. Zhou, J., Ye, D., Zhao, J., et al.: Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation. Int. J. Naval Arch. Ocean Eng. 10(3), 282–293 (2018)

    Article  Google Scholar 

  30. Sun, B., Zhu, D., Yang, S.X.: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle. IEEE Trans. Ind. Electronics 61(7), 3682–3693 (2013)

    Article  Google Scholar 

  31. Jiang, Y., Guo, C., Yu, H.: Robust trajectory tracking control for an underactuated autonomous underwater vehicle based on bioinspired neurodynamics. Int. J. Adv. Robotic Syst. 15(5), 1729881418806745 (2018)

    Google Scholar 

  32. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  33. Skjetne, R., Fossen, T.I., Kokotovic, P.V.: Adaptive maneuvering with experiments for a model ship in a marine control laboratory. Automatica 41, 289–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Wang, N. Adaptive Leader–Follower Formation for Unmanned Surface Vehicles Subject to Output Constraints. Int. J. Fuzzy Syst. 22, 2493–2503 (2020). https://doi.org/10.1007/s40815-020-00958-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00958-y

Keywords

Navigation