Skip to main content

Advertisement

Log in

Global sensitivity analysis on a numerical model of seawater intrusion and its implications for coastal aquifer management: a case study in Dagu River Basin, Jiaozhou Bay, China

Analyse de sensibilité globale d’un modèle numérique d’intrusion saline et ses implications Sur la gestion des aquifères côtiers: cas d’étude du bassin de la rivière Dagu, Baie de Jiaozhou, Chine

Análisis de sensibilidad global en un modelo numérico de intrusión de agua de mar y sus implicancias para la gestión de acuíferos costeros: un estudio de caso en la cuenca del río Dagu, Bahía de Jiaozhou (China)

海水入侵数值模型全局敏感性分析及其对滨海含水层管理的启示:以中国的胶州湾大沽河流域为例

Análise de sensibilidade global em um modelo numérico para intrusões de água do mar e suas implicações no gerenciamento do aquífero costeiro: um estudo de caso na Bacia do Rio Dagu, Baía de Jiaozhou, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Seawater intrusion (SWI) has triggered an accelerating process of freshwater contamination and significantly affected the soil fertility and local groundwater supply in the coastal area of Jiaozhou Bay, Shandong Province, China. This study establishes a three-dimensional numerical model based on SEAWAT code to simulate transient regional SWI to coastal aquifers in Dagu River Basin (DRB) adjacent to Jiaozhou Bay. The hydrogeological parameters in the SEAWAT model are calibrated and validated with the observed data of groundwater level and chloride (Cl) concentration from 1 January 2010 to 1 June 2018. Also, global sensitivity analysis is used to evaluate the impacts of hydrogeological parameters (aquifer hydraulic conductivity and specific yield), along with sources/sinks consisting of recharge from precipitation infiltration and groundwater abstraction, on the SWI model. The sensitivity analysis results indicate that the progression of SWI is sensitive to the groundwater recharge from precipitation infiltration and the groundwater abstraction in the study area, while the hydraulic conductivity is of secondary importance. Furthermore, the baseline SWI model is applied to predict the extent of SWI under different scenarios considering the possible future precipitation and groundwater abstraction. It is shown that increased recharge and reduced groundwater abstraction could effectively lessen the extent of future SWI. As a case study, the research efforts on the regional SWI model are of critical importance for investigating the occurrence of SWI, identifying the factors most influential on the SWI process, and providing useful predictive information for SWI management in the DRB aquifer of Jiaozhou Bay.

Résumé

L’intrusion d’eau de mer (IEM) a déclenché un processus accéléré de contamination des eaux et a affecté de manière significative la fertilité des sols et l’alimentation en eau de la zone côtière de la baie de Jiaozhou, Province de Shandong, Chine. Cette étude établit un modèle numérique 3D basé sur le code SEAWAT pour simuler l’intrusion saline régionale transitoire de l’aquifère côtier du bassin de la rivière Dagu (BRD) près de la baie de Jiaozhou. Les paramètres hydrogéologiques dans le modèle SEAWAT ont été calibrés et validés avec des données observées de niveau d’eau souterraine et concentration en chlorure (Cl) du 1er janvier 2010 au 1er juin 2018. De plus, l’analyse de sensibilité globale a été utilisée pour évaluer l’impact des paramètres hydrogéologiques (conductivité hydraulique et rendement spécifique) accompagnant les apports/pertes dans le modèle IEM constitués par la recharge par infiltration des précipitations et pompage des eaux souterraines. Les résultats de l’analyse de sensibilité indiquent que la progression de l’intrusion saline est sensible à la recharge de l’aquifère par infiltration des pluies et les pompages en nappes dans la zone d’étude, alors que la conductivité hydraulique est de moindre importance. De plus, le modèle IEM de base est utilisé pour prédire l’extension de l’intrusion saline pour différents scenarios considérant de possibles futurs précipitations et pompages. Il est montré qu’une augmentation de la recharge et réduction des prélèvements peut effectivement diminuer l’extension future de l’IEM. En tant que cas d’étude, les efforts de recherche sur la modélisation régionale de l’intrusion saline sont d’une grande importance pour explorer l’apparition de l’IEM, identifier les facteurs les plus influents sur les processus d’IEM, et apporter des informations prédictives intéressantes pour la gestion de l’IEM dans l’aquifère BRD de la baie de Jiaozhou.

Resumen

La intrusión de agua de mar (SWI) desencadenó un proceso acelerado de contaminación del agua dulce y afectó considerablemente a la fertilidad del suelo y al suministro local de aguas subterráneas en la zona costera de la bahía de Jiaozhou, en la provincia de Shandong (China). Este estudio establece un modelo numérico tridimensional basado en el código SEAWAT para simular la SWI regional transitoria en los acuíferos costeros de la cuenca del río Dagu (DRB) adyacente a la bahía de Jiaozhou. Los parámetros hidrogeológicos del modelo SEAWAT se calibran y validan con los datos observados del nivel de las aguas subterráneas y la concentración de cloruro (Cl) desde el 1 de enero de 2010 hasta el 1 de junio de 2018. Además, se utiliza el análisis de sensibilidad global para evaluar los efectos de los parámetros hidrogeológicos (conductividad hidráulica del acuífero y almacenamiento específico), junto con las fuentes y sumideros consistentes en la recarga por infiltración de las precipitaciones y la extracción de aguas subterráneas, en el modelo SEAWAT. Los resultados del análisis de sensibilidad indican que la progresión de la SWI es sensible a la recarga de aguas subterráneas por la infiltración de las precipitaciones y la extracción de aguas subterráneas en la zona de estudio, mientras que la conductividad hidráulica tiene una importancia secundaria. Además, el modelo de SWI de línea de base se aplica para predecir su amplitud en diferentes escenarios, teniendo en cuenta las posibles precipitaciones y la extracción de aguas subterráneas en el futuro. Se demuestra que el aumento de la recarga y la reducción de la extracción de aguas subterráneas podrían disminuir efectivamente la amplitud de la SWI futura. Como estudio de caso, los esfuerzos de investigación del modelo regional son de importancia crítica para investigar la ocurrencia de SWI, identificar los factores más influyentes en el proceso y proporcionar información predictiva útil para la gestión de SWI en el acuífero DRB de la Bahía de Jiaozhou.

摘要

海水入侵(SWI)引发了淡水污染的加速过程, 并严重影响了山东胶州湾沿岸地区的土壤肥力和地下水供给。本研究基于SEAWAT程序建立一个三维SWI数值模型以模拟胶州湾附近大沽河流域(DRB)滨海含水层的非稳定SWI过程。利用2010年1月1日至2018年6月1日的地下水位和氯离子(Cl)浓度观测数据, 对SEAWAT模型中的水文地质参数进行校准和验证。同时, 利用全局敏感性分析来评估水文地质参数(含水层渗透系数和给水度)以及由降水入渗补给和地下水开采组成的源汇项对SWI模型的影响。敏感性分析结果表明, SWI的发展对降水入渗补给和地下水开采最为敏感, 而渗透系数的影响则相对次要。此外, 考虑到未来可能的降水量和地下水开采量, 应用基准SWI模型来预测不同情景下SWI的程度。研究结果表明, 增加降水补给量和减少地下水开采量可以有效地降低未来SWI的范围。作为一个研究实例, 该区域SWI模型研究对于探究胶州湾DRB含水层中SWI的发生、识别SWI的主要影响因素以及为SWI管理提供有用的预测信息具有重要意义。

Resumo

A intrusão de água do mar (IAM) tem desencadeado um processo acelerado de contaminação de água doce e afetado significativamente a fertilidade do solo e o abastecimento de água subterrânea na área costeira da Baía de Jiaozhou, província de Shandong, China. Este estudo estabelece um modelo tridimensional baseado no código SEAWAT para simular a IAM transitória regional no aquífero costeiro na Bacia do Rio Dagu (BRD) adjacente a Baía de Jiaozhou. Os parâmetros hidrogeológicos no modelo SEAWAT foram calibrados e validados com os dados de observação do nível da água subterrânea e a concentração de cloreto (Cl) do dia 1 de janeiro 2010 ao dia 1 de junho de 2018. E ainda, análise de sensibilidade é usada para avaliar os impactos dos parâmetros hidrogeológicos (condutividade hidráulica e coeficiente de permeabilidade), junto as fontes/sumidouros que constituem a recarga por infiltração da precipitação e a captação de água subterrânea. Os resultados da análise de sensibilidade indicam que a progressão de IAM é sensível à recarga de água subterrânea a partir da infiltração da precipitação e a captação de água subterrânea na área de estudo, enquanto que a condutividade hidráulica possui importância secundária. Além disso, a linha de base do modelo de IAM é aplicado para prever a extensão da IAM em diferentes cenários considerando possível precipitação e captação de água subterrânea futura. Isto ilustra que o aumento de recarga e redução de captação de água subterrânea pode efetivamente diminuir a futura extensão da IAM. Como um estudo de caso, os esforços da pesquisa no modelo regional da IAM são de importância crucial para a investigação da ocorrência da IAM, identificando os fatores que mais influenciam no processo de IAM, e fornecendo informações de previsões úteis para o gerenciamento da IAM no aquífero BRD na Baía de Jiaozhou.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bakker M, Oude Essink GHP, Langevin CD (2004) The rotating movement of three immiscible fluids: a benchmark problem. J Hydrol 287:270–227

    Article  Google Scholar 

  • Bauer P, Held RJ, Zimmermann S, Linn F, Kinzelbach W (2006) Coupled flow and salinity transport modeling in semi-arid environments: the Shashe River Valley, Botswana. J Hydrol 316:163–183

    Article  Google Scholar 

  • Brown L (2011) World on the edge: how to prevent environmental and economic collapse. Norton, New York

    Google Scholar 

  • Chang YW, Hu BX, Xu ZX, Li X, Tong JX, Chen L, Zhang HX, Miao JJ, Liu HW, Ma Z (2018) Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China. J Contam Hydrol 215:1–10. https://doi.org/10.1016/j.jconhyd.2018.06.002

    Article  Google Scholar 

  • Cheng JM, Chen CX (2001) Three-dimensional modeling of density dependent saltwater intrusion in multilayered coastal aquifers in Jahe River basin, Shandong province, China. Groundwater 39(1):137–143

    Article  Google Scholar 

  • Chenini I, Mammou BA (2010) Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput Geosci 36(6):801–817

  • Cobaner M, Yurtal R, Dogan A, Motz LH (2012) Three dimensional simulation of seawater intrusion in coastal aquifers: a case study in the Goksu deltaic plain. J Hydrol 464–465:262–280

    Article  Google Scholar 

  • Coyle D, Buxton MJ, O’Brien BJ (2003) Measures of importance for economic analysis based on decision modeling. J Clin Epidemiol 56(10):989–997

    Article  Google Scholar 

  • Custodio E (2010) Coastal aquifers of Europe: an overview. Hydrogeol J 18(1):269–280. https://doi.org/10.1007/s10040-009-0496-1

  • Frey HC, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22(3):553–578. https://doi.org/10.1111/0272-4332.00039

  • Guo WX, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable density groundwater flow. Techniques of Water-Resources Investigations, book 6, chap A7 (Supersedes OFR 01-434), USGS, Reston, VA, 77 pp

  • Guvanasen V, Wade SC, Barcelo MD (2000) Simulation of regional groundwater flow and saltwater intrusion in Hernando County, Florida. Groundwater 38:772–783

    Article  Google Scholar 

  • Harbaugh AW (2005) The US Geological Survey modular ground-water model–the ground-water flow process. US Geol Surv Techniques Methods 6-A16

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81(1):23–69

    Article  Google Scholar 

  • Huang JQ, Christ JA, Goltz MN (2008) An assembly model for simulation of large-scale ground water flow and transport. Groundwater 46:882–892

    Google Scholar 

  • Hugman R, Stigter T, Costa L, Monteiro JP (2017) Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal). Hydrogeol J 25:2105–2121. https://doi.org/10.1007/s10040-017-1594-0

    Article  Google Scholar 

  • Iman RL, Helton JC (1988) An investigation of uncertainty and sensitivity analysis techniques for computer-models. Risk Anal 8(1):71–90. https://doi.org/10.1111/j.1539-6924.1988.tb01155.x

  • ISO (2020) Alpha-2 codes source. https://www.iso.org/obp/ui/#search/code/. Accessed July 2020

  • Kennedy GW (2012) Development of a GIS-based approach for the assessment of relative seawater vulnerability in Nova Scotia. IAH Congress 2012, Niagara Falls, ON, Canada

  • Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Werner AD, Simmons CT (2014) Sea-level rise impact on fresh groundwater lenses in two-layer small islands. Hydrol Process 28:5938–5953. https://doi.org/10.1002/hyp.10059

    Article  Google Scholar 

  • Khadra WM, Stuyfzand PJ (2018) Simulation of saltwater intrusion in a poorly karstified coastal aquifer in Lebanon (eastern Mediterranean). Hydrogeol J 26:1839–1856. https://doi.org/10.1007/s10040-018-1752-z

    Article  Google Scholar 

  • Khublaryan MG, Frolov AP, Yushmanov IO (2008) Seawater intrusion into coastal aquifers. Water Resour 35:274–286

    Article  Google Scholar 

  • Lin J, Snodsmith JB, Zheng CM, Wu JC (2009) A modeling study of seawater intrusion in Alabama Gulf Coast, USA. Environ Geol 57:119–130

    Article  Google Scholar 

  • Mansour AYS, Baba A, Gunduz O, Simsek C, Elci A, Murathan A, Sozbilir H (2017) Modeling of seawater intrusion in a coastal aquifer of Karaburun Peninsula, western Turkey. Environ Earth Sci 76:775

    Article  Google Scholar 

  • Mazzilli N, Guinot V, Jourde H (2010) Sensitivity analysis of two-dimensional steady state aquifer flow equations: implications for groundwater flow model calibration and validation. Adv Water Resour 33(8):905–922

    Article  Google Scholar 

  • Mulligan AE, Evans RL, Lizarralde D (2007) The role of paleochannels in groundwater/seawater exchange. J Hydrol 335(3–4):313–329

    Article  Google Scholar 

  • Oladyshkin S, de Barros FPJ, Nowak W (2012) Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology. Adv Water Resour 37:10–22. https://doi.org/10.1016/j.advwatres.2011.11.001

    Article  Google Scholar 

  • Paldor A, Shalev E, Katz O, Aharonov E (2019) Dynamics of saltwater intrusion and submarine groundwater discharge in confined coastal aquifers: a case study in northern Israel. Hydrogeol J 27:1611–1625. https://doi.org/10.1007/s10040-019-01958-5

    Article  Google Scholar 

  • Palmer MD, McNeall DJ, Dunstone NJ (2011) Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys Res Lett 38(13)

  • Pappenberger F, Beven KJ, Ratto M, Matgen P (2008) Multi-method global sensitivity analysis of flood inundation models. Adv Water Resour 31(1):1–14

    Article  Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C, IPCC (2007) Climate change 2007-impacts, adaptation and vulnerability. Working Group II Contribution to the FourthAssessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Qingdao Price Bureau (2017) Guidelines on the verification and management of agricultural water prices (in Chinese). Qingdao Price Bureau, Qingdao, China

  • Qingdao Water Conservancy Survey Design Institute (2017) Monitoring and control technology of seawater intrusion in Dagu River (in Chinese). Qingdao Water Conservancy Survey Design Institute, Qingdao, China

  • Qingdao Water Conservation Bureau (2006) Hydrologic data information system of the city of Qingdao (in Chinese). Qingdao Water Conservancy Survey Design Institute, Qingdao, China

  • Qu WJ, Li HL, Wan L, Wang XS, Jiang XW (2014) Numerical simulations of steady-state salinity distribution and submarine groundwater discharges in homogeneous anisotropic coastal aquifers. Adv Water Resour 74:318–328. https://doi.org/10.1016/j.advwatres.2014.10.009

    Article  Google Scholar 

  • Rajabi MM, Ataie-Ashtiani B, Simmons CT (2015) Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations. J Hydrol 520:101–122. https://doi.org/10.1016/j.jhydrol.2014.11.020

    Article  Google Scholar 

  • Ratto M, Tarantola S, Saltelli A (2001) Sensitivity analysis in model calibration: GSA-GLUE approach. Comput Phys Commun 136(3):212–224

    Article  Google Scholar 

  • Renau-Pruñonosa A, Morell I, Pulido-Velazquez D (2016) A methodology to analyse and assess pumping management strategies in coastal aquifers to avoid degradation due to seawater intrusion problems. Water Resour Manag 30:4823–4837

    Article  Google Scholar 

  • Saltelli A, Tarantola A, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, Chichester, UK

    Google Scholar 

  • Sanford WE, Konikow LF (1985) A two-constituent solute transport model for ground water having density. US Geol Surv Water Resour Invest Rep 85–89

  • Scanlon BR, Faunt CC, Longuevergen L, Reedy RC, Alley WM, McGuireVL MMPB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109(24):9320–9325. https://doi.org/10.1073/pnas.1200311109

    Article  Google Scholar 

  • Schneider JC, Kruse SE (2006) Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier islands: Dog Island and St. George Island, Florida, USA. Hydrogeol J 14:131–145

    Article  Google Scholar 

  • Shandong Province (2018) The implementation plan of comprehensive regulation of overexploited groundwater areas in Shandong province (in Chinese). Shandong Province, Jinan, China

  • Shi L, Jiao JJ (2014) SWI and coastal aquifer management in China: a review. Environ Earth Sci 72(8):2811–2819

    Article  Google Scholar 

  • Shoemaker WB, Edwards KM (2003) Potential for saltwater intrusion into the lower Tamiami Aquifer near Bonita Springs, southwestern Florida. US Geol Survey Water Resour Invest Rep 03–4262

  • Smith M (1992) CROPWAT: a computer program for irrigation planning and management. FAO Irrigation and Drainage paper, no. 46. Rome, Italy, 125 pp

    Google Scholar 

  • Stamatis G, Voudouris K (2003) Marine and human activity influences on the groundwater quality of southern Korinthos area (Greece). Hydrol Process 17:2327–2345

    Article  Google Scholar 

  • Stigter TY, Varanda M, Bento S, Nunes JP, Hugman R (2017) Combined assessment of climate change and socio-economic development as drivers of freshwater availability in the south of Portugal. Water Resour Manag 31:609–628

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology. Wiley, New York, 636 pp

    Google Scholar 

  • Trabelsi R, Zairi M, Dhia HB (2007) Groundwater salinization of the Sfax superficial aquifer, Tunisia. Hydrogeol J 15:1341–1355. https://doi.org/10.1007/s10040-007-0182-0

    Article  Google Scholar 

  • Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Feyen L (2017) Extreme sea levels on the rise along Europe’s coasts. Earth Future 5(3):304–323. https://doi.org/10.1002/2016EF000505

    Article  Google Scholar 

  • Wang Q, Huang AN, Zhao Y, Zhou Y, Yang B, Zhang LJ, Wu HM, Jiang YM, Kan MY (2016) Evaluation of the precipitation seasonal variation over eastern China simulated by BCC_CSM model with two horizontal resolutions. J Geophys Res Atmos 121(14):8374–8389

    Article  Google Scholar 

  • Watson TA, Werner AD, Simmons CT (2010) Transience of seawater intrusion in response to sea level rise. Water Resour Res 46:W12533. https://doi.org/10.1029/2010WR009564

    Article  Google Scholar 

  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu CH, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  • de Winter RC, Ruessink BG (2017) Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast. Clim Chang 141:685–701. https://doi.org/10.1007/s10584-017-1922-3

    Article  Google Scholar 

  • Wu JC, Meng F, Wang X, Wang D (2008) The development and control of the seawater intrusion in the eastern coastal of Laizhou Bay, China. Environ Geol 54:1763–1770

    Article  Google Scholar 

  • Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov V (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza strip coastal aquifer. Hydrogeol J. https://doi.org/10.1007/s100400050175

  • Yang Y, Wu JF, Sun XM, Wu JC (2012) A hybrid multi-objective evolutionary algorithm for optimal groundwater management under variable density conditions. Acta Geol Sin-Engl 86(1):246–255

    Article  Google Scholar 

  • Zeng XK, Dong J, Wang D, Wu JC, Zhu XB, Xu SH, Zheng XL, Xin J (2018) Identifying key factors of the seawater intrusion model of Dagu River basin, Jiaozhou Bay. Environ Res 165:425–430. https://doi.org/10.1016/j.envres.2017.10.039

    Article  Google Scholar 

  • Zhao J, Lin J, Wu JF, Yang Y, Wu JC (2016) Numerical modeling of SWI in Zhoushuizi district of Dalian City in northern China. Environ Earth Sci 75(9):805

    Article  Google Scholar 

  • Zheng CM, Wang PP (1999) MT3DMS: a modular three-dimension multispecies transport model for advection, disperse, and chemical reactions in groundwater system: documentation and user’s guide. Contract Report SERDP-99-1, US Army Corps of Engineers, Vicksburg, MS

  • Zheng XL, Li T, Jia LH (2004) Vulnerability assessment of the Dagu River groundwater reservoir based on Mapinfo (in Chinese with English abstract). Periodical Ocean Univ China 34(6):1023–1028

    Google Scholar 

  • Zhou J, Zheng XL, Flury M, Lin GQ (2009) Permeability changes during remediation of an aquifer affected by sea-water intrusion: a laboratory column study. J Hydrol 376:557–566. https://doi.org/10.1016/j.jhydrol.2009.07.067

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the editor Prof. Maria-Theresia Schafmeister, and the anonymous associate editor and two reviewers, whose constructive comments helped to improve the manuscript significantly.

Funding

This research is financially supported by the National Key Research and Development Plan of China (2016YFC0402807), the National Natural Science Foundation of China (41730856 and 41772254), and the Fundamental Research Funds for the Central Universities (14380105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Wu.

Electronic supplementary material

ESM 1

(PDF 8030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yang, Y., Wu, J. et al. Global sensitivity analysis on a numerical model of seawater intrusion and its implications for coastal aquifer management: a case study in Dagu River Basin, Jiaozhou Bay, China. Hydrogeol J 28, 2543–2557 (2020). https://doi.org/10.1007/s10040-020-02219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02219-6

Keywords

Navigation