Skip to main content
Log in

Photocurrent enhancement estimation of P3HT:PCBM:Au films as a function of gold nanoparticles concentration

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

This report provides a method to estimate how much the photocurrents can be increased by adding gold nanoparticles in P3HT:PCBM films, without having to carry out the complex process of fabricate a whole cell. The tuning effect of varying the gold nanoparticle concentration on optical properties of these films was analyzed by measuring optical absorption. To estimate the contribution of the optical absorption variation, theoretical photocurrents generated for these films as active layers were calculated using a photonic flux density equation. With this methodology, it is possible to estimate the amount of energy that can be harvest with a given gold nanoparticle concentration. Improvements up to 26% were obtained compared with films without added gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McGehee MD, Goh C (2008) Organic semiconductors for low—cost solar cells. In: AIP Conference Proceedings. AIP, pp 322–330

  2. (No Title). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf. Accessed 16 Dec 2019

  3. Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37. https://doi.org/10.1016/j.solener.2013.09.026

    Article  CAS  Google Scholar 

  4. Liang E, Chin C, Asri M, et al (2016) A review of recent plasmonic nanoparticles incorporated P3HT : PCBM organic thin fi lm solar cells. 36:12–28. https://doi.org/10.1016/j.orgel.2016.05.029

  5. Chou CH, Chen FC (2014) Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 6:8444–8458. https://doi.org/10.1039/c4nr02191f

    Article  CAS  Google Scholar 

  6. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23:3597–3602. https://doi.org/10.1002/adma.201100792

    Article  CAS  Google Scholar 

  7. Yoon W-J, Jung K-Y, Liu J, Duraisamy T, Revur R, Teixeira FL, Sengupta S, Berger PR (2010) Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energy Mater Sol Cells 94:128–132

    Article  CAS  Google Scholar 

  8. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  9. Royer P, Goudonnet JP, Warmack RJ, Ferrell TL (1987) Substrate effects on surface-plasmon spectra in metal-island films. Phys Rev B 35:3753–3759

    Article  CAS  Google Scholar 

  10. Xu G, Tazawa M, Jin P, Nakao S, Yoshimura K (2003) Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl Phys Lett 82:3811–3813

    Article  CAS  Google Scholar 

  11. Etchegoin P, Cohen LF, Hartigan H, Brown RJC, Milton MJT, Gallop JC (2004) Localized plasmon resonances in inhomogeneous metallic nanoclusters. Chem Phys Lett 383:577–583. https://doi.org/10.1016/j.cplett.2003.12.001

    Article  CAS  Google Scholar 

  12. Wang CCD, Choy WCH, Duan C, Fung DDS, Sha WEI, Xie FX, Huang F, Cao Y (2012) Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J Mater Chem 22:1206–1211. https://doi.org/10.1039/c1jm14150c

    Article  CAS  Google Scholar 

  13. Janssen G, Aguirre A, Goovaerts E, Vanlaeke P, Poortmans J, Manca J (2007) Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents. Eur Phys Journal-Applied Phys 37:287–290

    Article  CAS  Google Scholar 

  14. Zheng F, Yang X-Y, Bi P-Q, Niu MS, Lv CK, Feng L, Qin W, Wang YZ, Hao XT, Ghiggino KP (2017) Poly (3-hexylthiophene) coated graphene oxide for improved performance of bulk heterojunction polymer solar cells. Org Electron 44:149–158

    Article  CAS  Google Scholar 

  15. Chang SH, Chiang C-H, Cheng H-M, Tai CY, Wu CG (2013) Broadband charge transfer dynamics in P3HT: PCBM blended film. Opt Lett 38:5342–5345

    Article  CAS  Google Scholar 

  16. Maruhashi H, Oku T, Suzuki A et al (2017) Fabrication and characterization of PCBM: P3HT-based thin-film organic solar cells with zinc phthalocyanine and 1, 8-Diiodooctane. Chem Mater Eng 5:1–7

    Article  CAS  Google Scholar 

  17. Mendez-gamboa JA, Castro-rodriguez R, Perez-quintana IV (2016) A fi gure of merit to evaluate transparent conductor oxides for solar cells using photonic flux density. Thin Solid Films 599:14–18. https://doi.org/10.1016/j.tsf.2015.12.038

    Article  CAS  Google Scholar 

  18. Reyes DC, Mendez-Gamboa JA, Vidal MR, Acosta M (2018) Room-temperature ITO electrodes evaluated for organic solar cells using a photonic flux density figure of merit. J Mater Sci Mater Electron 1–6

Download references

Acknowledgments

D. Canto-Reyes acknowledges to CONACYT postgraduate scholarship program. The authors thank the CINVESTAV Nano-Bio materials Laboratory and Dr. Victor Rejon for the access and technical assistance in SEM and EDS measurements.

Availability of data and material

The authors declare the availability of data and material.

Code availability

Not applicable for that section

Funding

CONACYT-SENER under contract 254667

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Acosta.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canto-Reyes, D., Soberanis-Ortiz, R.A., Riech, I. et al. Photocurrent enhancement estimation of P3HT:PCBM:Au films as a function of gold nanoparticles concentration. Gold Bull 53, 141–145 (2020). https://doi.org/10.1007/s13404-020-00284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00284-z

Keywords

Navigation