Skip to main content

Advertisement

Log in

Emerging role of S100B protein implication in Parkinson’s disease pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The exact etiology of Parkinson’s disease (PD) remains obscure, lacking effective diagnostic and prognostic biomarkers. In search of novel molecular factors that may contribute to PD pathogenesis, emerging evidence highlights the multifunctional role of the calcium-binding protein S100B that is widely expressed in the brain and predominantly in astrocytes. Preclinical evidence points towards the possible time-specific contributing role of S100B in the pathogenesis of neurodegenerative disorders including PD, mainly by regulating neuroinflammation and dopamine metabolism. Although existing clinical evidence presents some contradictions, estimation of S100B in the serum and cerebrospinal fluid seems to hold a great promise as a potential PD biomarker, particularly regarding the severity of motor and non-motor PD symptoms. Furthermore, given the recent development of S100B inhibitors that are able to cross the blood brain barrier, novel opportunities are arising in the research field of PD therapeutics. In this review, we provide an update on recent advances in the implication of S100B protein in the pathogenesis of PD and discuss relevant studies investigating the biomarker potential of S100B in PD, aiming to shed more light on clinical targeting approaches related to this incurable disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

SNpc:

Substantia nigra pars compacta

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

6-OHDA:

6-Hydroxydopamine

GDNF:

Glial-derived neurotrophic factor

BBB:

Blood–brain barrier

DAMP:

Damage-associated molecular pattern

RAGE:

Receptor for advanced glycation end products

HMGB1:

High mobility group box 1

LIMK:

LIM kinase

AP-1:

Activating protein-1

COX-2:

Cyclooxygenase-2

TNF-α:

Tumor necrosis factor- α

CNS:

Central nervous system

ROS:

Reactive oxygen species

cAMP:

Cyclic adenosine monophosphate

ERKs:

Extracellular signal-regulated kinases

GRK2:

G protein-coupled receptor kinase 2

DBS:

Deep brain stimulation

SNP:

Single-nucleotide polymorphism

References

  1. Radhakrishnan DM, Goyal V (2018) Parkinson’s disease: a review. Neurol India 66(Supplement):S26–S35

    PubMed  Google Scholar 

  2. Angelopoulou E, Paudel YN, Piperi C (2019) miR-124 and Parkinson’s disease: a biomarker with therapeutic potential. Pharmacol Res 150:104515

    CAS  PubMed  Google Scholar 

  3. Angelopoulou E, Pyrgelis ES, Piperi C (2020) Neuroprotective potential of chrysin in Parkinson’s disease: molecular mechanisms and clinical implications. Neurochem Int 132:104612

    PubMed  Google Scholar 

  4. Booth HDE, Hirst WD, Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci 40(6):358–370

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bahat-Stroomza M et al (2009) Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J Mol Neurosci 39(1–2):199–210

    CAS  PubMed  Google Scholar 

  6. Chung WS et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin LF et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    CAS  PubMed  Google Scholar 

  8. Sathe K et al (2012) S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-alpha pathway. Brain 135(Pt 11):3336–3347

    PubMed  PubMed Central  Google Scholar 

  9. Morales I et al (2017) Striatal astrocytes engulf dopaminergic debris in Parkinson’s disease: a study in an animal model. PLoS ONE 12(10):e0185989

    PubMed  PubMed Central  Google Scholar 

  10. Morales I et al (2016) The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem 139(1):81–95

    CAS  PubMed  Google Scholar 

  11. Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49(1):28–38

    CAS  PubMed  Google Scholar 

  12. Gray MT, Woulfe JM (2015) Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 35(5):747–750

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorci G et al (2010) S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc Psychiatry Neurol 2010:656481

    PubMed  PubMed Central  Google Scholar 

  14. Donato R et al (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793(6):1008–1022

    CAS  PubMed  Google Scholar 

  15. Liu Y, Buck DC, Neve KA (2008) Novel interaction of the dopamine D2 receptor and the Ca2+ binding protein S100B: role in D2 receptor function. Mol Pharmacol 74(2):371–378

    CAS  PubMed  Google Scholar 

  16. Cristovao JS, Gomes CM (2019) S100 proteins in Alzheimer’s disease. Front Neurosci 13:463

    PubMed  PubMed Central  Google Scholar 

  17. Jiang X et al (2018) RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 672:65–69

    CAS  PubMed  Google Scholar 

  18. Angelopoulou E, Piperi C, Papavassiliou AG (2018) High-mobility group box 1 in Parkinson’s disease: from pathogenesis to therapeutic approaches. J Neurochem 146(3):211–218

    CAS  PubMed  Google Scholar 

  19. Viana SD et al (2016a) Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson’s disease. J Neurochem 138(4):598–609

    CAS  PubMed  Google Scholar 

  20. Bianchi R et al (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286(9):7214–7226

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bianchi R et al (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81(1):108–118

    CAS  PubMed  Google Scholar 

  22. Mori T, Asano T, Town T (2010) Targeting S100B in cerebral ischemia and in Alzheimer's disease. Cardiovasc Psychiatry Neurol 2010:687067

    PubMed  PubMed Central  Google Scholar 

  23. Sorci G et al (2004) S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 199(2):274–283

    CAS  PubMed  Google Scholar 

  24. Riuzzi F, Sorci G, Donato R (2006) S100B stimulates myoblast proliferation and inhibits myoblast differentiation by independently stimulating ERK1/2 and inhibiting p38 MAPK. J Cell Physiol 207(2):461–470

    CAS  PubMed  Google Scholar 

  25. Riuzzi F et al (2012) S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. PLoS ONE 7(1):e28700

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huttunen HJ et al (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275(51):40096–40105

    CAS  PubMed  Google Scholar 

  27. Businaro R et al (2006) S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res 83(5):897–906

    CAS  PubMed  Google Scholar 

  28. Michetti F et al (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148(2):168–187

    CAS  PubMed  Google Scholar 

  29. Rydbirk R et al (2017) Cytokine profiling in the prefrontal cortex of Parkinson’s disease and multiple system atrophy patients. Neurobiol Dis 106:269–278

    CAS  PubMed  Google Scholar 

  30. Iuvone T et al (2007) Cannabinoid CB1 receptor stimulation affords neuroprotection in MPTP-induced neurotoxicity by attenuating S100B up-regulation in vitro. J Mol Med (Berl) 85(12):1379–1392

    CAS  Google Scholar 

  31. Barger SW, Van Eldik LJ (1992) S100 beta stimulates calcium fluxes in glial and neuronal cells. J Biol Chem 267(14):9689–9694

    CAS  PubMed  Google Scholar 

  32. Twitchell W, Brown S, Mackie K (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 78(1):43–50

    CAS  PubMed  Google Scholar 

  33. Stampanoni Bassi M et al (2017) Cannabinoids in Parkinson’s disease. Cannabis Cannabinoid Res 2(1):21–29

    PubMed  PubMed Central  Google Scholar 

  34. Arcuri C et al (2005) S100B increases proliferation in PC12 neuronal cells and reduces their responsiveness to nerve growth factor via Akt activation. J Biol Chem 280(6):4402–4414

    CAS  PubMed  Google Scholar 

  35. Bohush A, Niewiadomska G, Filipek A (2018) Role of mitogen activated protein kinase signaling in Parkinson's disease. Int J Mol Sci 19(10):2973

    PubMed Central  Google Scholar 

  36. Al-Jarrah MD, Jamous M (2011) Effect of endurance exercise training on the expression of GFAP, S100B, and NSE in the striatum of chronic/progressive mouse model of Parkinson’s disease. NeuroRehabilitation 28(4):359–363

    PubMed  Google Scholar 

  37. Gomide V, Chadi G (2005) Glial bFGF and S100 immunoreactivities increase in ascending dopamine pathways following striatal 6-OHDA-induced partial lesion of the nigrostriatal system: a sterological analysis. Int J Neurosci 115(4):537–555

    CAS  PubMed  Google Scholar 

  38. Cunha MP et al (2017) MPP(+)-lesioned mice: an experimental model of motor, emotional, memory/learning, and striatal neurochemical dysfunctions. Mol Neurobiol 54(8):6356–6377

    CAS  PubMed  Google Scholar 

  39. Batassini C et al (2015) Striatal injury with 6-OHDA transiently increases cerebrospinal GFAP and S100B. Neural Plast 2015:387028

    PubMed  PubMed Central  Google Scholar 

  40. Muramatsu Y et al (2003a) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease—an immunocytochemical study. J Neural Transm (Vienna) 110(10):1129–1144

    CAS  Google Scholar 

  41. Muramatsu Y et al (2003b) Expression of S-100 protein is related to neuronal damage in MPTP-treated mice. Glia 42(3):307–313

    PubMed  Google Scholar 

  42. Teismann P et al (2012) Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 33(10):2478–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Viana SD et al (2016b) Presymptomatic MPTP mice show neurotrophic S100B/mRAGE striatal levels. CNS Neurosci Ther 22(5):396–403

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313(3):239–245

    PubMed  Google Scholar 

  45. Liu J et al (2011a) S100B transgenic mice develop features of Parkinson’s disease. Arch Med Res 42(1):1–7

    PubMed  Google Scholar 

  46. Liu J et al (2017) Preliminary analysis of parkinson-like motor coordination abnormityin brain-specific hS100B transgenic mice. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 39(2):240–246

    PubMed  Google Scholar 

  47. Liu JL et al (2011b) Metabonomics study of brain-specific human S100B transgenic mice by using high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry. Biol Pharm Bull 34(6):871–876

    CAS  PubMed  Google Scholar 

  48. Lecours C et al (2018) Microglial implication in Parkinson’s disease: loss of beneficial physiological roles or gain of inflammatory functions? Front Cell Neurosci 12:282

    PubMed  PubMed Central  Google Scholar 

  49. Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31(4):665–677

    CAS  PubMed  Google Scholar 

  50. Adami C et al (2001) S100B expression in and effects on microglia. Glia 33(2):131–142

    CAS  PubMed  Google Scholar 

  51. Zhou S et al (2018) S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm Res 67(11–12):937–949

    CAS  PubMed  Google Scholar 

  52. Schaf DV et al (2005) S100B and NSE serum levels in patients with Parkinson’s disease. Parkinsonism Relat Disord 11(1):39–43

    PubMed  Google Scholar 

  53. Carvalho DZ et al (2015) Overnight S100B in Parkinson’s disease: a glimpse into sleep-related neuroinflammation. Neurosci Lett 608:57–63

    CAS  PubMed  Google Scholar 

  54. Themistocleous MS et al (2017) The insertion of electrodes in the brain for electrophysiological recording or chronic stimulation is not associated with any biochemically detectable neuronal injury. Neuromodulation 20(5):424–428

    PubMed  Google Scholar 

  55. Gruden MA et al (2011) Immunoprotection against toxic biomarkers is retained during Parkinson’s disease progression. J Neuroimmunol 233(1–2):221–227

    CAS  PubMed  Google Scholar 

  56. Peskind ER et al (2001) Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 39(5–6):409–413

    CAS  PubMed  Google Scholar 

  57. Wilhelm KR et al (2007) Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson’s disease patients. Eur J Neurol 14(3):327–334

    CAS  PubMed  Google Scholar 

  58. Maetzler W et al (2011) Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of Lewy body-associated dementias. J Alzheimers Dis 26(1):171–179

    CAS  PubMed  Google Scholar 

  59. Maetzler W et al (2014) Comparable autoantibody serum levels against amyloid- and inflammation-associated proteins in Parkinson’s disease patients and controls. PLoS ONE 9(2):e88604

    PubMed  PubMed Central  Google Scholar 

  60. Dos Santos MCT et al (2018) Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson’s disease diagnosis. PLoS ONE 13(11):e0206536

    PubMed  Google Scholar 

  61. Maarouf CL et al (2013) Quantitative appraisal of ventricular cerebrospinal fluid biomarkers in neuropathologically diagnosed Parkinson’s disease cases lacking Alzheimer’s disease pathology. Biomark Insights 8:19–28

    PubMed  PubMed Central  Google Scholar 

  62. Gmitterova K et al (2018) Cerebrospinal fluid markers analysis in the differential diagnosis of dementia with Lewy bodies and Parkinson's disease dementia. Eur Arch Psychiatry Clin Neurosci 270(4):461–470

    PubMed  Google Scholar 

  63. Guo Y et al (2013) Genetic analysis of the S100B gene in Chinese patients with Parkinson disease. Neurosci Lett 555:134–136

    CAS  PubMed  Google Scholar 

  64. Liu J et al (2005) SNPs and haplotypes in the S100B gene reveal association with schizophrenia. Biochem Biophys Res Commun 328(1):335–341

    CAS  PubMed  Google Scholar 

  65. Roche S et al (2007) Candidate gene analysis of 21q22: support for S100B as a susceptibility gene for bipolar affective disorder with psychosis. Am J Med Genet B Neuropsychiatr Genet 144B(8):1094–1096

    CAS  PubMed  Google Scholar 

  66. Fardell C et al (2018) S100B polymorphisms are associated with age of onset of Parkinson’s disease. BMC Med Genet 19(1):42

    PubMed  PubMed Central  Google Scholar 

  67. Hohoff C et al (2010) Risk variants in the S100B gene predict elevated S100B serum concentrations in healthy individuals. Am J Med Genet B Neuropsychiatr Genet 153B(1):291–297

    CAS  PubMed  Google Scholar 

  68. Angelopoulou E et al (2019) The relationship between environmental factors and different Parkinson’s disease subtypes in Greece: data analysis of the Hellenic Biobank of Parkinson’s disease. Parkinsonism Relat Disord 67:105–112

    PubMed  Google Scholar 

  69. Kahyaoglu I et al (2014) Umbilical CORD S100B levels in active and passive smoker women. Eur Rev Med Pharmacol Sci 18(5):723–727

    CAS  PubMed  Google Scholar 

  70. Gao H et al (2018) S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett 439:91–100

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Baudry A et al (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329(5998):1537–1541

    CAS  PubMed  Google Scholar 

  72. Donato R et al (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsui T et al (2002) Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part I: enhanced astrocytic synthesis of s-100beta in the periinfarct area precedes delayed infarct expansion. J Cereb Blood Flow Metab 22(6):711–722

    CAS  PubMed  Google Scholar 

  74. Hsiao K et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    CAS  PubMed  Google Scholar 

  75. Kato H et al (2004) Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice. Brain Res 1030(1):66–73

    CAS  PubMed  Google Scholar 

  76. Bresnick AR (2018) S100 proteins as therapeutic targets. Biophys Rev 10(6):1617–1629

    PubMed  PubMed Central  Google Scholar 

  77. Rinaldi F et al (2019) inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J Control Release 294:17–26

    CAS  PubMed  Google Scholar 

  78. Esposito E et al (2012) Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS ONE 7(8):e41880

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Goes ATR et al (2018) Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: involvement of neuroinflammation and neurotrophins. Chem Biol Interact 279:111–120

    CAS  PubMed  Google Scholar 

  80. Bermejo PE, Anciones B (2009) A review of the use of zonisamide in Parkinson’s disease. Ther Adv Neurol Disord 2(5):313–317

    PubMed  PubMed Central  Google Scholar 

  81. Asanuma M et al (2010) Neuroprotective effects of zonisamide target astrocyte. Ann Neurol 67(2):239–249

    CAS  PubMed  Google Scholar 

  82. Gil-Martinez AL et al (2018) Unexpected exacerbation of neuroinflammatory response after a combined therapy in old parkinsonian mice. Front Cell Neurosci 12:451

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dorszewska J et al (2014) Molecular effects of l-dopa therapy in Parkinson’s disease. Curr Genom 15(1):11–17

    CAS  Google Scholar 

  84. Esposito G et al (2014) Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation. Gut 63(8):1300–1312

    CAS  PubMed  Google Scholar 

  85. Sorci G et al (2011) The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog 7(3):e1001315

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kouli A, Horne CB, Williams-Gray CH (2019) Toll-like receptors and their therapeutic potential in Parkinson’s disease and alpha-synucleinopathies. Brain Behav Immun 81:41–51

    CAS  PubMed  Google Scholar 

  87. Marxreiter F et al (2013) Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice. Neurobiol Dis 59:38–51

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cirillo C et al (2011) S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol 17(10):1261–1266

    PubMed  PubMed Central  Google Scholar 

  89. Santos SF et al (2019) The gut and Parkinson’s disease—a bidirectional pathway. Front Neurol 10:574

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

YNP would like to acknowledge Monash University Malaysia for supporting with HDR Scholarship.

Funding

This research has not received any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

EA carried out the literature review, conceptualized, and prepared the initial draft. YNP edited and contributed in the final manuscript. CP provided critical inputs, edited and contributed to the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christina Piperi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelopoulou, E., Paudel, Y.N. & Piperi, C. Emerging role of S100B protein implication in Parkinson’s disease pathogenesis. Cell. Mol. Life Sci. 78, 1445–1453 (2021). https://doi.org/10.1007/s00018-020-03673-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03673-x

Keywords

Navigation