Skip to main content
Log in

Dynamical response of an eco-epidemiological system with harvesting

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This article presents a study of Leslie–Gower predator–prey system to investigate the dynamics of disease transmission among predator species. The system includes the harvesting of infected predator. The positivity, boundedness of the solutions and permanence of the system are taken into consideration. The stability and Hopf bifurcation analyses around biologically feasible equilibria are scrutinized. The harvesting of infected predator plays a crucial role for the occurrence of limit cycle oscillations and stability around the interior equilibrium point. Our results disclose that infected predator harvesting has a considerable consequence on the eco-epidemiological system. The optimal control theory has been applied to investigate optimal strategies for controlling the infection. Analytical findings are confirmed through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amalia, R.D., Arif, D.K.: Optimal control of predator-prey mathematical model with infection and harvesting on prey. J. Phys.: Conf. Ser. 974(1), 012050 (2018)

  2. Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil. Trans. Roy. Soc. B 314, 533–570 (1986)

    Google Scholar 

  3. Arino, O., El Abdllaoul, A., Micram, J., Chattopadhyay, J.: Infection in prey population may act as a biological control in ratio-dependent predator-prey models. Nonlinearity 17, 1101–1116 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bairagi, N., Chaudhuri, S., Chattopadhyay, J.: Harvesting as a disease control measure in an eco-epidemiological system–a theoretical study. Math. Biosci. 217, 134–144 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bhattacharyya, R., Mukhopadhyay, B.: On an eco-epidemiological model with prey harvesting and predator switching: local and global perspectives. Nonlinear Anal. Real World Appl. 11, 3824–3833 (2010)

    Article  MathSciNet  Google Scholar 

  6. Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F.: Chattopadhyay, J: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dynam. 87, 1553–1573 (2017)

    Article  Google Scholar 

  7. Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F., Chattopadhyay, J.: A delayed prey-predator system with prey subject to the strong Allee effect and disease. Nonlinear Dynam. 84(3), 1569–1594 (2016)

    Article  MathSciNet  Google Scholar 

  8. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    MATH  Google Scholar 

  9. Brauer, F., Kribs, C.: Dynamical Systems for Biological Modeling: An Introduction. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  10. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990)

    MATH  Google Scholar 

  11. Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58, 193–210 (1998)

    Article  MathSciNet  Google Scholar 

  12. Das, K.P.: A study of harvesting in a predator-prey model with disease in both populations. Math. Methods Appl. Sci. 39(11), 2853–2870 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gard, T.C., Hallam, T.G.: Persistece in food webs-I Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting. Nonlinear Dynam. 88(2), 1501–1533 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hu, G.P., Li, X.L.: Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey. Chaos Solitons Fractals 45(3), 229–237 (2012)

    Article  MathSciNet  Google Scholar 

  16. Jana, S., Guria, S., Das, U., Kar, T.K., Ghorai, A.: Effect of harvesting and infection on predator in a prey-predator system. Nonlinear Dynam. 81(1–2), 1–14 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Jiao, J.J., Chen, L.S., Nieto, J.J., Angela, T.: Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey. Appl. Math. Mech. 29(5), 653–663 (2008)

    Article  MathSciNet  Google Scholar 

  18. Johri, A., Trivedi, N., Sisodiya, A., Sing, B., Jain, S.: Study of a prey-predator model with disease prey. Int. J. Contemp. Math. Sci. 7(9), 489–498 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Kant, S., Kumar, V.: Stability analysis of predator-prey system with migrating prey and disease infection in both specise. Appl. Math. Model. 42, 509–539 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-part I. Proc. Roy. Soc. Edinburgh Sect. A 115, 700–721 (1927)

    MATH  Google Scholar 

  21. Kong, F., Nieto, J.J. : Almost periodic dynamical behaviors of the hematopoiesis model with mixed discontinuous harvesting terms. Discrete Cont. Dyn. B 25(11) (2019)

  22. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1924)

    MATH  Google Scholar 

  23. Meng, X.Y., Qin, N.N., Huo, H.F.: Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. J. Biol. Dyn. 12(1), 342–374 (2018)

    Article  MathSciNet  Google Scholar 

  24. Meng, X.Y., Wang, J.G., Huo, H.F.: Dynamical behaviour of a nutrient-plankton model with Holling type IV, delay, and harvesting. Discrete Dyn. Nat. Soc. (2018). https://doi.org/10.1155/2018/9232590

    Article  MathSciNet  MATH  Google Scholar 

  25. Nandi, S.K., Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Prey-predator model with two-stage infection in prey: concerning pest control. J. Nonlinear Dynam. 2015, 1–13 (2015)

    Article  Google Scholar 

  26. Pontryagin, L.S., Boltianskii, V. G., Gamkrelidze, R. V., Mishchenko, E.F.: The mathematical theory of optimal processes. New York (1962)

  27. Purnomo, A.S., Darti, I., Suryanto, A.: Dynamics of eco-epidemiological model with harvesting. AIP Conference Proceedings 1913(1), 020018 (2017)

    Article  Google Scholar 

  28. Sarwardi, S., Haque, M., Venturino, E.: Global stability and persistence in LG-Holling type II diseased predator ecosystems. J. Biol. Phys. 37(6), 91–106 (2011)

    Article  Google Scholar 

  29. Shaikh, A.A., Das, H., Ali, N.: Study of LG-Holling type III predator-prey model with disease in predator. J. Appl. Math. Comput. 58, 235–255 (2018)

    Article  MathSciNet  Google Scholar 

  30. Sharma, S., Samanta, G.P.: Analysis of a two prey one predator system with disease in the first prey population. Int. J. Dyn. Control 3(3), 210–224 (2015)

    Article  MathSciNet  Google Scholar 

  31. Sharma, S., Samanta, G.P.: A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. Chaos Solitons Fractals 70, 69–84 (2015)

    Article  MathSciNet  Google Scholar 

  32. Singh, M.K., Bhadauria, B.S., Singh, B.K.: Qualitative analysis of a Leslie-Gower predator-prey system with nonlinear harvesting in predator. Int. J. Eng. Math. 2016, 1–15 (2016)

    Article  Google Scholar 

  33. Sujatha, K., Gunasekaran, M.: Qualitative and quantitative approaches in dynamics of two different prey-predator systems. IJSCE 5, 76–80 (2015)

    Google Scholar 

  34. Sujatha, K., Gunasekaran, M.: Two ways stability analysis of predator - prey system with diseased prey population. IJES 4, 61–66 (2015)

    Google Scholar 

  35. Sujatha, K., Gunasekaran, M.: Dynamic in a harvested prey-predator model with susceptible-infected-susceptible (SIS) epidemic disease in the prey. Adv. Appl. Math. Biosci 7, 23–31 (2016)

    Google Scholar 

  36. Volterra, V., Memoria della, R.: Accademica Nazionale Dei Lincei. Translation: Animal Ecology. McGraw-Hill, New York (1926)

  37. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  38. Xu, R., Zhang, S.H.: Modelling and analysis of a delayed predator-prey model with disease in the predator. Appl. Math. Comput. 224, 372–386 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, J.S., Sun, L.: Analysis of eco-epidemiological model with epidemic in the predator. J. Biomath. 20(2), 157–164 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, Y., Chen, S., Gao, S., Fan, K., Wang, Q.: A new non-autonomous model for migratory birds with Leslie-Gower Holling-type II schemes and saturation recovery rate. Math. Comput. Simulation 132, 289–306 (2017)

    Article  MathSciNet  Google Scholar 

  41. Zhang, Z., Upadhyay, R.K., Datta, J.: Bifurcation analysis of a modified Leslie-Gower model with Holling type-IV functional response and nonlinear prey harvesting. Adv. Difference Equ. 2018(1), 127 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to ICCR (Indian Council for Cultural Relations), New Delhi for awarding scholarship [File No. 6-44/2015-16/ISD-II]. The authors are thankful to Professor T. K. Kar for providing many suggestions during the preparation of the paper. The authors are also grateful to the learned reviewers for their valuable comments for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Absos Ali Shaikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, H., Shaikh, A.A. Dynamical response of an eco-epidemiological system with harvesting. J. Appl. Math. Comput. 65, 67–91 (2021). https://doi.org/10.1007/s12190-020-01379-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01379-8

Keywords

Mathematics Subject Classification

Navigation