Skip to main content
Log in

Weighted composition operator on quaternionic Fock space

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with several important properties of weighted composition operator acting on the quaternionic Fock space \({\mathcal {F}}^2({\mathbb {H}})\). Complete equivalent characterizations for its boundedness and compactness are established. As corollaries, the descriptions for composition operator and multiplication operator on \({\mathcal {F}}^2({\mathbb {H}})\) are presented, which can indicate some well-known existing theories in complex Fock space. Finally, as an appendix the closed expression for the kernel function of \({\mathcal {F}}^2({\mathbb {H}})\) is exhibited, which can deepen the understanding of \({\mathcal {F}}^2({\mathbb {H}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock space in the slice hyperholomorphic setting. In: Bernstein, S., et al. (eds.) Hypercomplex Analysis: New Perspectives and Applications. Selected Papers Presented at the Session on Clifford and Quaternionic Analysis at the 9th Congress of the International Society for Analysis, its Applications, and Computation (ISAAC), Krakow, Poland, August 5–9, 2013. Trends in Mathematics, pp. 43–59. Birkhäuser/Springer, New York, NY (2014)

  2. Arcozzi, N., Sarfatti, G.: Invariant metrics for the quaternionic Hardy space. J. Geom. Anal. 25(3), 2028–2059 (2015)

    Article  MathSciNet  Google Scholar 

  3. Colombo, F., González-Cervantes, J.O., Maria, E.L.: On Two Approaches to the Bergman Theory for Slice Regular Functions. Advances in Hypercomplex Analysis, pp. 39–54. Springer INdAM Series, Berlin (2013)

    MATH  Google Scholar 

  4. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus. Springer, Basel (2011)

    Book  Google Scholar 

  5. Colombo, F., Sabadini, I., Struppa, D.C.: Entire Slice Regular Functions. SpringerBriefs in Mathematics, Berlin (2016)

    Book  Google Scholar 

  6. Cowen, C.C., Gallardo, E.A.: A new class of operators and a description of adjoints of composition operators. J. Funct. Anal. 238(2), 447–462 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  8. Diki, K., Gal, S.G., Sabadini, I.: Polynomial approximation in slice regular Fock spaces. Complex Anal. Oper. Theory 13, 2729–2746 (2019)

    Article  MathSciNet  Google Scholar 

  9. Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quaternionic variable. C. R. Math. Acad. Sci. Paris 342(10), 741–744 (2006)

    Article  MathSciNet  Google Scholar 

  10. Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279–301 (2007)

    Article  MathSciNet  Google Scholar 

  11. Gentili, G., Stoppato, C., Struppa, D.C.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, Berlin (2013)

    Book  Google Scholar 

  12. Guo, K., Izuch, K.: Composition operators on Fock type spaces. Acta Sci. Math. 74(3), 807–828 (2008)

    MathSciNet  Google Scholar 

  13. Hai, P.V., Khoi, L.H.: Complex symmetry of weighted composition operators on the Fock space. J. Math. Anal. Appl. 433, 1757–1771 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liang, Y.: A left linear weighted composition operator on quaternionic Fock space. Result. Math. 74(1), 23 (2019)

    Article  MathSciNet  Google Scholar 

  15. Le, T.: Normal and isometric weighted composition operators on the Fock space. Bull. Lond. Math. Soc. 46(4), 847–856 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ren, G., Wang, X.: Slice regular composition operators. Complex Var. Elliptic Equ. 61(5), 682–711 (2016)

    Article  MathSciNet  Google Scholar 

  17. Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)

    Book  Google Scholar 

  18. Villalba, C., Colombo, F., Gantner, J., González-Cervantes, J.: Bloch, Besov and Dirichlet spaces of slice hyperholomorphic functions. Complex Anal. Oper. Theory 9(2), 479–517 (2015)

    Article  MathSciNet  Google Scholar 

  19. Zhu, K.H.: Analysis on Fock Spaces. Springer, New York (2012)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Zhenghua Xu (Hefei University of Technology) for some useful discussions. Pan Lian is supported by the Tianjin Normal University Starting Grant (No. 004337). Yuxia Liang is supported by the National Natural Science Foundation of China (No. 11701422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Liang.

Additional information

Communicated by Manuel Maestre.

Appendix

Appendix

It is well-known that the kernel function always plays significant role in the investigations on properties of Hilbert spaces. In this appendix, we show that the quaternionic exponential function \(e_{\star }^{pq}=\sum _{n=0}^\infty \frac{p^n q^n}{n!}\) admits a closed expression.

Theorem 5.1

For any \(p=a+\omega b\), \(q=c+\eta d\), where \(\omega , \eta \) belong to the 2-sphere \({\mathbb {S}}\). Then function \(e_{\star }^{pq}\) can be expressed as

$$\begin{aligned} e_{\star }^{pq}= & {} \frac{1}{2}(\cos (bd-ac)+\omega \sin (bd-ac))e^{ac+bd}(1+\omega \eta )\nonumber \\&+\frac{1}{2}(\cos (ac+bd)-\omega \sin (bd+ac))e^{ac-bd}(1-\omega \eta ). \end{aligned}$$
(17)

Proof

Denoting

$$\begin{aligned} p=a+\omega b=r_1(\cos x+ \omega \sin x) \end{aligned}$$

and

$$\begin{aligned}q=c+\eta b=r_2(\cos y+\eta \sin y), \end{aligned}$$

by direct computation, we have that

$$\begin{aligned} p^nq^n & = {} r_1^nr_2^n(\cos nx+ \omega \sin nx)(\cos ny+\eta \sin ny)\\& =r_1^nr_2^n \cos nx \cos ny + r_1^nr_2^n \omega \sin nx \cos ny \\& \quad +r_1^nr_2^n \eta \cos nx \sin ny + r_1^nr_2^n \omega \eta \sin nx \sin ny. \end{aligned}$$

Thus, the quaternionic exponential can be split into four series,

$$\begin{aligned} e_{\star }^{pq}=K_1+K_2+K_3+K_4 \end{aligned}$$
(18)

where

$$\begin{aligned} K_1:= & {} \sum _{n=0}^\infty \frac{r_1^n r_2^n \cos nx \cos ny}{n!},\\ K_2:= & {} \omega \sum _{n=0}^\infty \frac{r_1^n r_2^n \sin nx \cos ny}{n!},\\ K_3:= & {} \eta \sum _{n=0}^\infty \frac{r_1^n r_2^n \cos nx \sin ny}{n!},\\ K_4:= & {} \omega \eta \sum _{n=0}^\infty \frac{r_1^n r_2^n \sin nx \sin ny}{n!}. \end{aligned}$$

In the sequel, we compute the closed expression of each \(K_i\), \(i=1, 2, 3, 4\).

$$\begin{aligned} K_1= & {} \frac{1}{2} \sum _{n=0}^\infty \frac{(r_1r_2)^n(\cos n(x-y)+\cos n(x+y))}{n!}\\= & {} \frac{1}{4} \sum _{n=0}^\infty \frac{(r_1r_2)^n(e^{i n(x-y)}+e^{-i n(x-y)}+e^{i n(x+y)}+e^{-i n(x+y)}}{n!}\\= & {} \frac{1}{4}\left[ e^{r_1r_2e^{i(x-y)}}+ e^{r_1r_2e^{-i(x-y)}}+e^{r_1r_2e^{i(x+y)}}+e^{r_1r_2e^{-i(x+y)}}\right] \\= & {} \frac{1}{2} [e^{r_1r_2\cos (x-y)}\cos (r_1r_2 \sin (x-y))\\&+e^{r_1r_2\cos (x+y)}\cos (r_1r_2 \sin (x+y))].\end{aligned}$$

Similarly, we obtain

$$\begin{aligned} K_2= & {} \frac{\omega }{2} [e^{r_1r_2\cos (x-y)}\sin (r_1r_2 \sin (x-y))\\&+e^{r_1r_2\cos (x+y)}\sin (r_1r_2 \sin (x+y))]\\ K_3= & {} \frac{\eta }{2} [e^{r_1r_2\cos (x+y)}\sin (r_1r_2 \sin (x+y))\\&-e^{r_1r_2\cos (x-y)}\sin (r_1r_2 \sin (x-y))]\\ K_4= & {} \frac{\omega \eta }{2} [e^{r_1r_2\cos (x-y)}\cos (r_1r_2 \sin (x-y))\\&-e^{r_1r_2\cos (x+y)}\cos (r_1r_2 \sin (x+y))] .\end{aligned}$$

Putting the terms \(K_i\), \(i=1,2,3,4\) into (18), eliminating the angular variables and grouping corresponding terms, we obtain the desired closed expression (17). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, P., Liang, Y. Weighted composition operator on quaternionic Fock space. Banach J. Math. Anal. 15, 7 (2021). https://doi.org/10.1007/s43037-020-00087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-020-00087-6

Keywords

Mathematics Subject Classification

Navigation