Skip to main content
Log in

Liquid-Phase Synthesis and Physical and Chemical Properties of Ceramic Electrolyte Nanomaterials in the CeO2–Sm2O3 System for Solid Oxide Fuel Cells

  • NEW TECHNOLOGIES FOR DESIGN AND PROCESSING OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

By the method of joint crystallization of solutions of nitrate salts, the highly dispersed powders of the composition (CeO2)0.98(Sm2O3)0.02, (CeO2)0.95(Sm2O3)0.05, and (CeO2)0.90(Sm2O3)0.10 are synthesized, and on their basis, nanoceramic materials with a crystalline cubic structure of fluorite type are obtained, with the grain size of the crystallites of ~68–81 nm (1300°С). Their mechanical and electrophysical properties are studied; it is found that they have an open porosity of 2–6% and predominantly ionic (ti = 0.82–0.71 in the range of 300–700°C) type of electrical conductivity due to the formation of mobile oxygen vacancies during the heterovalent replacement of Се4+ with Sm3+, σ700°C =1.3 × 10–2 S/cm. The studies show the prospects of using the obtained ceramic materials as solid oxide electrolytes of intermediate-temperature fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Borisov, V.N., Prospective application of power plants on fuel cells in power supply, in Tverdooksidnye toplivnye elementy (Solid Oxide Fuel Cells), Snezhinsk: Vesross. Nauchno-Issled. Inst. Tekh. Fiz., 2003, pp. 9–13.

  2. Kozlov, S.I., Vodorodnaya energetika: sovremennoe sostoyanie, problemy, perspektivy (Hydrogen Energy: Current State, Problems, and Prospects), Moscow: Gazprom, 2009.

  3. Ponomareva, A.A., Ivanova, A.G., Shilova, O.A., and Kruchinina, I.Yu., Current state and prospects of manufacturing and operation of methane-based fuel cells (review), Glass Phys. Chem., 2016, vol. 42, no. 1, pp. 1–19.

    Article  CAS  Google Scholar 

  4. Nakamura, A. and Wagner, J.B., Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure, J. Electrochem. Soc., 1986, vol. 133, no. 8, pp. 1542–1548.

    Article  CAS  Google Scholar 

  5. Prasad, D.H., Son, J.-W., Kim, B.-K., Lee, H.-W., and Lee, J.-H., Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol-gel thermolysis process for IT-SOFCs, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 3107–3112.

    Article  CAS  Google Scholar 

  6. Rodionov, V.G., Energetika: problemy nastoyashchego i vozmozhnosti budushchego (Energetics: Problems of the Present and Possibilities of the Future), Moscow: ENAS, 2010.

  7. Kalinina, M.V., Morozova, L.V., Egorova, T.L., Arsent’ev, M.Yu., Drozdova, I.A., and Shilova, O.A., Synthesis and physicochemical properties of a solid oxide nanocomposite based on a ZrO2–Y2O3–Gd2O3–MgO system, Glass Phys. Chem., 2016, vol. 42, no. 5, pp. 505–511.

    Article  CAS  Google Scholar 

  8. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., Low temperature sintering and microstructural development of nanoscale Y-TZP ceramics, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.

    Article  CAS  Google Scholar 

  9. Gosudarstvennyi standart SSSR (State Standard of the USSR), Moscow: Izd. Stnadartov, 1981.

  10. Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physicochemical properties of electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.

    Google Scholar 

  11. Tikhonov, P.A., Kuznetsov, A.K., and Kravchin-skaya, M.V., Device for measuring electronic and ionic conductivity of oxide materials, Zavod. Lab., Diagn. Mater., 1978, no. 7, pp. 837–838.

  12. Pivovarova, A.P., Strakhov, V.I., and Popov, V.P., On the mechanism of electron conductivity in lanthanum metaniobate, Tech. Phys. Lett., 2002, vol. 28. no. 10, pp. 815–817.

    Article  CAS  Google Scholar 

  13. Sychev, M.M., Minakova, T.S., Slizhov, Yu.G., and Shilova, O.A., Kislotno-osnovnye kharakteristiki pover-khnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid-Basic Characteristics of the Surface of Solids and Quality Control of the Materials and Composites), St. Petersburg: Khimizdat, 2016.

  14. Nechiporenko, A.P., Donorno-aktseptornye svoistva poverkhnosti tverdofaznykh sistem. Indikatornyi metod (Donor–Acceptor Properties of the Surface of Solid-Phase Systems: Indicator Method), St.-Petersburg: Lan’, 2017.

  15. GOST (State Standard) 9450-76: Measurements Microhardness by Diamond Instruments Indentation, Moscow: Standartinform, 1976.

  16. Strekalovskii, V.N., Polezhaev, Yu.M., and Pal’guev, S.F., Oksidy s primesnoi razuporyadochennost’yu: sostav, struktura, fazovye prevrashheniya (Oxides with Impurity Disorder: Composition, Structure, and Phase Transformation), Moscow: Nauka, 1987.

  17. Kovalenko, A.S., Shilova, O.A., Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Arsent’ev, M.Yu., Feature of the synthesis and the study of nanocrystalline cobalt-nickel spinel, Glass Phys. Chem., 2014, vol. 40, no. 4, pp. 106–113.

    Article  CAS  Google Scholar 

  18. Khasanov, O.L., Dvilis, E.S., and Bikbaeva, Z.G., Metody kompaktirovaniya i konsolidatsii nanostrukturnykh materialov i izdelii (Methods of Compaction and Consolidation of Nanostructured Materials and Products), Tomsk: Tomsk. Gos. Politekh. Univ., 2008.

  19. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1982.

    Google Scholar 

  20. Simonenko, T.L., Kalinina, M.V., Khamova, T.V., Shilova, O.A., Simonenko, N.P., and Simonenko, E.P., Synthesis and physicochemical properties of nanopowders and ceramics in a CeO2–Gd2O3 system, Glass Phys. Chem., 2018, vol. 44, no. 4, pp. 314–321.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the State Assignment of the Institute of Silicate Chemistry of the Russian Academy of Sciences (state registration number AAAA-A19-119022290091-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Kalinina, D. A. Duskina, N. Yu. Kovalko, S. V. Myakin, M. Yu. Arsent’ev, N. A. Khristyuk or O. A. Shilova.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, M.V., Duskina, D.A., Kovalko, N.Y. et al. Liquid-Phase Synthesis and Physical and Chemical Properties of Ceramic Electrolyte Nanomaterials in the CeO2–Sm2O3 System for Solid Oxide Fuel Cells. Inorg. Mater. Appl. Res. 11, 1229–1235 (2020). https://doi.org/10.1134/S2075113320050147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320050147

Keywords:

Navigation