Skip to main content
Log in

Designing the Composition of a Cement-Based 3D Construction Printing Material

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The physical and technological properties of the 3D construction printing material are formulated. It is shown that the composition should have unique rheological characteristics, controlled setting time, high adhesion, and fast strength. It is determined that a similar material with the required properties can be obtained by creating a composite material based on two active substances: a cementing material and a polymer binder, on one hand, and modification of the particles surface with a superplasticizer, on the other hand. The regularities of the influence of organic components (polymer binder and oligomeric superplasticizer) on the cement matrix are obtained. The mortar mobility, setting time, strength characteristics, and microstructure of the polymer–cement mortar are investigated. A patented composition of the composite material is developed for the innovative construction industry based on Portland cement and polyvinyl acetate dispersion. By modifying the phase boundary of the colloidal system, the proposed composite has the required plastic strength, high setting rate, high fast strength, crack resistance, and a number of other properties necessary for 3D printing of large-sized products and off-formwork structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Xi-Qiang, L., Jing-Fang, L., Tao, Z., Liang, H., Nan, Z., Juan, L., and Guoyou, L., CN Patent 104310918A, 2014.

  2. Tianrong, Y. and Qiaoling, L., CN Patent 104891891A, 2015.

  3. Peng, F. and Xinmiao, M., CN Patent 104309126A, 2014.

  4. Fu-Cai, L., Yi-Yuan, W., Min, X., Bin, L., Xin-Zhen, Z., and Ming, H., CN Patent 104961411A, 2015.

  5. Vatin, N., Chumadova, L., Goncharov, I., Zykova, V., Karpenya, A., Kim, A., and Finashenkov, E., 3D printing in building industry, Stroit. Unikal’nykh Zdanii Sooruzh., 2017, no. 1 (52), pp. 27–46.

  6. Lloret, E., Shahab, A.R., Linus, M., et al., Complex concrete structures Merging existing casting techniques with digital fabrication, Comput.-Aided Des., 2015, vol. 60, pp. 40–49.

    Article  Google Scholar 

  7. Lim, S., Buswell, RA., Le, T.T., et al., Developments in construction-scale additive manufacturing processes, Autom. Constr., 2012, vol. 21, no. 1, pp. 262–268.

    Article  Google Scholar 

  8. Roussel, N., A thixotropy model for fresh fluid concretes: theory, validation and applications, Cem. Concr. Res., 2006, vol. 36, no. 10, pp. 1797–1806.

    Article  CAS  Google Scholar 

  9. Poluektova, V.A., Shapovalov, N.A., and Evtushenko, E.I., Nano-modified polymer solution for additive technologies, Int. J. Pharm. Technol., 2016, vol. 8, no. 4, pp. 24930–24937.

    CAS  Google Scholar 

  10. Poluektova, V.A., Shapovalov, N.A., and Vladykin, V.N., From nano-scale to macrostructure in composite for additive technologies, Proc. Int. Conf. “Actual Issues of Mechanical Engineering (AIME 2017),” Amsterdam: Atlantis Press, 2017, pp. 614–619.

  11. Can Touch, Construction mixes for the 3D printer. http://specavia.pro/catalog/stroitelnye-smesi-dlja-3dprintera/.

  12. Idea-Z, Some aspects of printing on building S series 3D printers. http://specavia.pro/articls/2238/.

  13. APIS-KOR technical report. http://apis-cor.com/ files/ApisCor_presentation.pdf.

  14. APIS-KOR technical solutions. http://apis-cor.com/ files/ApisCor_TechnicalSolutions_RU.pdf.

  15. Ohama, Y., Handbook of Polymer-Modified Concrete and Mortars, Amsterdam: Elsevier, 1995.

    Google Scholar 

  16. Popov, K.N., Polimernye i polimertsementnye betony, rastvory i mastiki (Polymeric and Polymer-Cement Concretes, Mortars, and Mastics), Moscow: Vysshaya Shkola, 1987.

  17. Poluektova, V.A., Slyusar’, A.A., and Shapovalov, N.A., Superplastifikator na osnove floroglyutsinfurfurol’nykh oligomerov dlya vodnykh mineral’nykh suspenzii (Superplasticizer Based on Phloroglucinofurfural Oligomers for Water Mineral Dispersions), Belgorod: Belgorod. Gos. Tekhnol. Univ., 2012.

  18. Poluektova, V.A., Shapovalov, N.A., Chernikov, R.O., and Evtushenko, E.I., RF Patent 2661970, 2018.

  19. Rekomendatsii po fiziko-khimicheskomu kontrolyu sostava i kachestva superplastifikatora S-3 (Recommendations for the Physicochemical Control of the Composition and Quality of Superplasticizer S-3), Moscow: Nauchno-Issled., Proektn.-Konstr. Tekhnol. Inst. Betona Zhelezobetona, 1984.

  20. Ramachandran, V.S., Concrete Admixtures Handbook: Properties, Science, and Technology, Amsterdam: Elsevier, 1983.

    Google Scholar 

  21. Shapovalov, N.A., Poluektova, V.A., Ponomarev, F.Yu., and Chernikov, R.O., RF Inventor’s Certificate no. 20160014, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Poluektova.

Additional information

Translated by A. Kolemesin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poluektova, V.A. Designing the Composition of a Cement-Based 3D Construction Printing Material. Inorg. Mater. Appl. Res. 11, 1013–1019 (2020). https://doi.org/10.1134/S2075113320050263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320050263

Keywords:

Navigation