Skip to main content
Log in

Segregation of Alloying Elements on Small-Angle Grain Boundaries in Ferritic-Martensitic Steels under Ion Irradiation

  • MATERIALS OF POWER ENGINEERING AND RADIATION-RESISTANT MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Segregation of chemical elements was studied in ferritic-martensitic steels RUSFER-EK-181 and ChS-139—promising structural materials for fast neutron reactor core. To simulate the radiation effects, Fe ions with an energy of 5.6 MeV at temperatures of 250–400°C to damage doses of ~6 dpa and at temperatures of 350–450°C to a damage dose of 30 dpa were used. RUSFER-EK-181 steel was also studied after thermal aging at 450°C for 5000 h. Z-contrast analysis of the irradiated steels revealed the segregation of alloying elements on dislocations at small-angle tilt and mixed grain boundaries. Atom probe tomography of the ion-irradiated ChS-139 steel showed that clusters enriched in Ni, Si, and Mn were formed on the dislocations, including dislocations of small-angle grain boundaries. Clusters enriched in Si were formed on dislocations in the RUSFER-EK-181 steel. In the aged state of RUSFER-EK-181 steel, segregation of Cr, V, Mn, Si, and N was shown at dislocations of the small-angle grain boundary. The calculated misorientation angles of the small-angle grain boundaries were ~1°–3°, and the twist angle of the mixed boundary was ~3°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. van der Schaaf, B., Tavassoli, F., Fazio, C., Rigal, E., Diegele, E., Lindau, R., and LeMarois, G., The development of EUROFER reduced activation steel, Fusion Eng. Des., 2003, vol. 69, pp. 197–203.

    Article  CAS  Google Scholar 

  2. Klueh, R.L., Hashimoto, N., and Maziasz, P.J., New nanoparticle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nucl. Mater., 2007, vols. 367–370, pp. 48–53.

  3. Ioltukhovsky, A.G., Leontyeva-Smirnova, M.V., Kazennov, Y.I., Medvedeva, E.A., Tselishchev, A.V., Shamardin, V.K., Povstyanko, A.V., Ostrovsky, S.E., Dvoryashin, A.M., Porollo, S.I., Vorobyev, A.N., and Khabarov, V.S., Influence of operation conditions on structure and properties of 12% Cr steels as candidate structural materials for fusion reactor, J. Nucl. Mater., 1998, vols. 258–263, pp. 1312–1318.

  4. Gaganidze, E., Petersen, C., Materna-Morris, E., et al., Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60, J. Nucl. Mater., 2011, vol. 417, pp. 93–98.

    Article  CAS  Google Scholar 

  5. Petersen, C., Povstyanko, A., Prokhorov, V., Fedoseev, A., Makarov, O., and Dafferner, B., Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’, J. Nucl. Mater., 2007, vol. 367–370, pp. 544–549.

  6. Gaganidze, E., Dafferner, B., Ries, H., Rolli, R., Schneider, H.-C., and Aktaa, J., Irradiation Program HFR Phase IIb–SPICE Impact Testing on up to 16.3 dpa Irradiated RAFM Steels: Final Report for Task TW2-TTMS 001b-D05, Karlsruhe: Forschungszentrum Karlsruhe Helmholtz-Gemeinschaft, 2008.

    Google Scholar 

  7. Materna Morris, E., Möslang, A., Rolli, R., and Schneider, H.C., Effect of helium on tensile properties and microstructure in 9%Cr–WVTa–steel after neutron irradiation up to 15 dpa between 250 and 450°C, J. Nucl. Mater., 2009, vols. 386–388, pp. 422–425.

  8. Voevodin, V.N. and Neklyudov, I.M., Evolyutsiya strukturnofazovogo sostoyaniya i radiatsionnaya stoikost’ konstruktsionnykh materialov (The Evolution of the Structural Phase State and Radiation Resistance of Structural Materials), Kiev: Naukova Dumka, 2006.

  9. Was, G.S., Fundamentals of Radiation Materials Science, Berlin: Springer-Verlag, 2007.

    Google Scholar 

  10. Rogozhkin, S.V., Nikitin, A.A., Khomich, A.A., Iskandarov, N.A., Khoroshilov, V.V., Bogachev, A.A., Lukyanchuk, A.A., Raznitsyn, O.A., Shutov, A.S., Fedin, P.A., Kuibeda, R.P., Kulevoy, T.V., Vasiliev, A.L., Presniakov, M.Yu., Kravchuk, K.S., et al., Emulation of radiation damage of structural materials for fission and fusion power plants using heavy ion beams, Phys. At. Nucl., 2019, vol. 82, no. 9, pp. 1239–1251.

    Article  CAS  Google Scholar 

  11. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. B, 2013, vol. 310, pp. 75–80.

    Article  CAS  Google Scholar 

  12. Rogozhkin, S.V., Iskandarov, N.A., Nikitin, A.A., Khomich, A.A., Khoroshilov, V.V., Bogachev, A.A., Lukyanchuk, A.A., Raznitsyn, O.A., Shutov, A.S., Kulevoy, T.V., Fedin, P.A., Vasiliev, A.L., Presniakov, M.Yu., Leontyeva-Smirnova, M.V., Mozhanov, E.M., et al., Study of the microscopic origins of radiation hardening of ferritic-martensitic steels RUSFER-EK-181 and ChS-139 in the simulation experiment with heavy ion irradiation, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 2, pp. 359–365.

    Article  Google Scholar 

  13. Rogozhkin, S.V., Aleev, A.A., Lukyanchuk, A.A., Shutov, A.S., Raznitsyn, O.A., and Kirillov, S.E., Atom probe tomography prototype with laser evaporation, Instrum. Exp. Techn., 2017, vol. 60, no. 3, pp. 428–433.

    Article  Google Scholar 

  14. Chernov, V.M., Leont’eva-Smirnova, M.V., Potapenko, M.M., Polekhina, N.A., Litovchenko, I.Yu., Tyumentsev, A.N., Astafurova, E.G., and Khromova, L.P., Structural-phase transformation and physical properties of ferriticmartensitic 12% chromium steels EK-181 and ChS-139, Tech. Phys., 2016, vol. 61, no. 1, pp. 97–102.

    Article  CAS  Google Scholar 

  15. Rogozhkin, S.V., Iskandarov, N.A., Nikitin, A.A., Bogachev, A.A., Khomich, A.A., Khoroshilov, V.V., Lukyanchuk, A.A., Raznitsyn, O.A., Shutov, A.S., Fedin, P.A., Kulevoy, T.V., Leontyeva-Smirnova, M.V., and Mozhanov, E.M., Effect of low-temperature ion irradiation on the nanostructureof 12% chromium ChS-139 steel, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 5, pp. 1078–1084.

    Article  Google Scholar 

  16. Leont’eva-Smirnova, M.V., Ioltukhovskii, A.G., Chernov, V.M., Kolobov, Yu.R., and Kozlov, E.N., Structural features of heat resistant 12% Cr steels with low-activation, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., 2004, no. 2 (63), pp. 142–155.

  17. Amelinckx, S., The Direct Observation of Dislocations, New York: Academic, 1964.

    Google Scholar 

  18. Bondarenko, G.G., Kabanova, T.A., and Rybalko, V.V., Fundamentals of Materials Science, Moscow: Binom, Laboratoriya Znanii, 2014.

  19. Styman, P.D., Hyde, J.M., Parfitt, D., Wilford, K., Burke, M.G., English, C.A., and Efsing, P., Post-irradiation annealing of Ni–Mn–Si-enriched clusters in a neutron-irradiated RPV steel weld using atom probe tomography, J. Nucl. Mater., 2015, vol. 459, pp. 127–134.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The irradiation of samples and tomographic atom probe analysis were performed on the equipment of the KAMIKS Shared Access Center (http://kamiks.itep.ru/) of the National Research Center Kurchatov Institute—ITEP; preparation of samples by focused ion beam methods was performed on the equipment of the Resource Center NANOZOND of the National Research Center Kurchatov Institute (http://www.rc.nrcki.ru/pages/main/nanozond/).

Funding

This study was supported by a grant of the Russian Science Foundation, project no. 17-19-01696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Iskandarov, N.A., Nikitin, A.A. et al. Segregation of Alloying Elements on Small-Angle Grain Boundaries in Ferritic-Martensitic Steels under Ion Irradiation. Inorg. Mater. Appl. Res. 11, 1103–1109 (2020). https://doi.org/10.1134/S2075113320050275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320050275

Keywords:

Navigation