Skip to main content
Log in

The Structure of Quaternary Deposits in the Upper Dnieper Valley According to Integrated (Combined) Geophysical Data

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

The ground penetrating radar (GPR) and electrical resistivity tomography (ERT) geophysical methods were used for geological mapping, location of lithological boundaries, and description of the inner structure of sediments of the Upper Dnieper zone, as well as for locating optimal sites for drilling and correlating borehole cores. The geophysical information we obtained allowed restructuring of the upper Dnieper valley due to Valdaian glaciation to be identified. The GPR data in the frequency range of 50–250 MHz enabled description of the upper part of the geological section; ERT provided data up to a 80–100-m depth. Modified focusing inversion based on the major boundaries obtained with GPR was performed to correct the ERT inversion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Astakhov, V., Shkatova, V., Zastrozhnov, A., and Chuyko, M., Glaciomorphological map of the Russian Federation, Quat. Int., 2016, vol. 420, pp. 4–14.

    Article  Google Scholar 

  2. Barashkova, Z.K., Lavrovich, O.N., Biryukov, I.P., and Shuleshkina, E.A., Karta chetvertichnykh otlozhenii Smolenskoi oblasti. Masshtab 1 : 500 000. MPR RF (The 1 : 500 000 Map of Quaternary Deposits of the Smolensk Region. MNR of Russia), Moscow: VAGTMingeo SSSR, 1998.

  3. Bernatek-Jakiel, A. and Kondracka, M., Combining geomorphologicalmapping and near surface geophysics (GPR and ERT) to study piping systems, Geomorphology, 2016, vol. 274, pp. 193–209.

    Article  Google Scholar 

  4. Bobachev, A.A., Gorbunov, A.A., Modin, I.N., and Shevnin, V.A., Electrical resistivity tomography and induced polarization survey, Instr. Syst. Explor. Geophys., 2006, no. 2, pp. 14–17.

  5. Bolshakov, D.K. and Modin, I.N., Method of multisegment electrotomographic measurements, in Sb. mater. VII mezhd. naucho-prakt. konf. “Nauka i obrazovanie v sovremennom mire” (Proc. VII Int. Sci. Pract. Conf. “Science and Education in the Modern World”), Moscow: Izd. NITs Sci. Centre, 2015, vol. 7, pp. 11–17.

  6. Bristow, C.S. and Jol, H.M., Ground penetrating radar in sediments, Geol. Soc. Spec. Publ., 2003, no. 211.

  7. Efremov, K.D., Bolshakov, D.K., and Modin, I.N., Multisegment measurements by electrotomography at areal and two-dimensional surveys, in Tez. dokl. Mezhd. nauchno-tekhn. konf. “Geofizicheskayarazvedka-2017” (Proc. Int. Sci. Pract. Conf. “Geoexploration-2017”), Gos. Univ. Dubna: Dubna, 2017.

  8. Ékes, C. and Hickin, E.J., Ground penetrating radar facies of the paraglacial Cheekye fan, southwestern British Columbia, Canada, Sediment. Geol., 2001, vol. 143, nos. 3–4, pp. 199–217.

    Article  Google Scholar 

  9. Glazunov, V.V. and Lalomov, D.A., The combined application of ground penetrating radar and electrical resistivity imaging for the investigation of sand-clay geological cross-section, in Proc. 10th EAGE Sci. Pract. Conf. Exhibition Eng. Geophysics, 2014.

  10. Gosudarstvennye geologicheskie karty Rossii, List no. 36-VIII, masshtab 1 : 200 000, stratigraficheskaya kolonka (The 1 : 200 000 State Geological Maps of Russia. Sheet no. 36-VIII. Stratigraphic Column), Leningrad: Vseross. Nauchno-Issled. Geol. Inst., 1970.

  11. Isachenkov, V.A., New data on the morphology of the Dnieper valley between Dorogobuzh and Orsha, Izv. Akad. Nauk SSSR, Ser. Geogr., 1964, no. 4, pp. 114–119.

  12. Kaminsky, A.E. and Tarasov, A.V., Modified focusing inversion of electrical and TEM data, Online Geosci. Database EAGE Earth Doc, 2006, pp. 824–828.

    Google Scholar 

  13. Kvasov, D.D., Pozdnechetvertichnaya istoriya krupnykh ozer i vnutrennikh morei Vostochnoi Evropy (Late Quaternary History of Large Lakes and Inland Seas of Eastern Europe), Leningrad: Nauka, 1975.

  14. Lalomov, D.A., Integration of electrotomography and georadiolocation for solving engineering-geological tasks in transport construction facilities, Cand. (Geol.-Mineral.) Dissertation, St. Petersburg, 2017.

  15. Loke, M.H. and Barker, R.D., Least-squares deconvolution of apparent resistivity pseudosections, Geophys, 1995, vol. 60, pp. 1682–1690.

    Article  Google Scholar 

  16. Modin, I.N., Bol’shakov, D.K., and Efremov, K.D., The development of ERT technology using multi-segment measurements, Online Geosci. Database EAGE Earth Doc, 2017.

    Google Scholar 

  17. Panin, A.V., Adamiec, G., Arslanov, K.A., et al., Absolute chronology of fluvial events in the Upper Dnieper River system and its palaeogeographic implications, Geochronometria, 2014, vol. 41, no. 3, pp. 278–293.

    Article  Google Scholar 

  18. Panin, A., Adamiec, G., and Filippov, V., Fluvial response to proglacial effects and climate in the upper Dnieper valley (Western Russia) during the late Weichselian and the Holocene, Quaternaire, 2015, vol. 26, no. 1, pp. 27–48.

    Article  Google Scholar 

  19. Panin, A., Astakhov, V., Lotsari, E., et al., Middle and Late Quaternary glacial lake-outburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia, Earth Sci. Rev., 2020, vol. 201, no. 103 069, pp. 1–29.

    Article  Google Scholar 

  20. Pellicer, X.M. and Gibson, P., Electrical resistivity and ground penetrating radar for the characterisation of the internal architecture of Quaternary sediments in the Midlands of Ireland, J. Appli. Geoph., 2011, vol. 75, pp. 638–647.

    Article  Google Scholar 

  21. Portniaguine, O. and Zhdanov, M.S., Focusing geophysical inversion images, Geophysics, 1999, vol. 64, pp. 874–887.

    Article  Google Scholar 

  22. Salov, I.N., Boundaries of maximum distribution of the Moscow glaciation and Valdai Glaciation in Belorussia and Smolensk Region and their marginal formations, in Kraevye obrazovaniya materikovykh oledenenii (Marginal Formations of Continental Glaciations), Moscow: Nauka, 1972, pp. 145–154.

  23. Shevnin, V.A. and Kolesnikov, V.P., Rating depth VES for the uniform and layered medium, Electr. J. “GEORazrez”, 2011, no. 1 (8), pp. 1–9.

  24. Shevnin, V.A., Modin, I.N., Bobachev, A.A., et al., New approaches to electrical sounding in horizontally inhomogeneous media, Izv.,Phys. Solid Earth, 1996, vol. 31, no. 12, pp. 1075–1086.

    Google Scholar 

  25. Starovoitov, A.V., Interpretatsiya georadiolokatsionnykh dannykh: Ucheb. Posobie (Interpretation of GPR Data. Tutorial), Moscow: Izd. Mosk. Gos. Univ., 2008.

  26. Stolyarova, T.I., Karta chetvertichnykh otlozhenii, kvadrat no. 36-VIII, masshtab 1:200 000 (The 1 : 200 000 Map of Quaternary Deposits. Sheet 36-VIII), Moscow: Mingeo SSSR, 1970.

  27. Sysuev, V.V., Georadar research of multiscale structures in landscapes (case study of Smolensk–Moscow Upland), Vestn. Mosk. Univ. Ser. 5: Geogr., 2014, no. 4, pp. 26–33.

  28. Vladov, M.L. and Sudakova, M.S., Georadiolokatsiya. Ot fizicheskikh osnov do perspektivnykh napravlenii: Ucheb. posobie (Ground Penetrating Radar. From Basic Physics to Future Tends. Turorial), Moscow: GEOS, 2017.

  29. Zhang, Z., Chunduru, R.K., and Jervis, M.A., Determining bed boundaries from inversion of EM logging data using general measures of model structure and data misfit, Geophysics, 2000, vol. 65, no. 1, pp. 76–82.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors express their gratitude to the staff of the Contemporary Problems of Geophysics seminar and personally to Professor M.L. Vladov for fruitful discussions of the research results. We would like to thank the staff and students of the Departments of Geology and Geography of the Moscow State University: D.K. Bolshakov, D.V. Shmurak, N. Korneeva, G. Titov, D. Minyaylov, A. Kuvinov and T. Saetgoreyev for their assistance in field work and geodetic survey.

Funding

The research was carried out with the financial support of the Russian Science Foundation (project no. 17-17-01289). Data processing was performed using the infrastructure of IGRAS within the framework of the State Task Force 0148-2019-0005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. S. Bricheva, I. N. Modin, A. V. Panin, K. D. Efremov or V. M. Matasov.

Additional information

Translated by M. Hannibal

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bricheva, S.S., Modin, I.N., Panin, A.V. et al. The Structure of Quaternary Deposits in the Upper Dnieper Valley According to Integrated (Combined) Geophysical Data. Moscow Univ. Geol. Bull. 75, 413–424 (2020). https://doi.org/10.3103/S014587522004002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014587522004002X

Keywords:

Navigation