Skip to main content
Log in

Low-Molecular-Weight Ligands of Luteinizing Hormone Receptor with the Activity of Antagonists

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Currently, a search for selective antagonists of luteinizing hormone (LH) receptor, which are required to suppress the steroidogenesis in hormone-dependent tumors and to prevent the ovarian hyperstimulation syndrome, is carried out. One approach to tackle this problem is the development of low-molecular-weight antagonists of the allosteric site of this receptor, which is located in its transmembrane domain. The aim of this work was to develop the heterocyclic compounds, the derivatives of thieno[2,3-d]pyrimidine (TP31), pyrimido[4,5,6-de][1,6]naphthyridine (PP10), and pyrido[3,4-d]pyrimidine (PP17), and to study their ability to affect the functional activity of the LH receptor in the in vitro and in vivo conditions. It was shown that TP31 at micromolar concentrations suppressed stimulating effects of human chorionic gonadotropin (hCG) and TP03, an allosteric agonist of the LH receptor, on the adenylyl cyclase activity in rat testicular membranes; its effect was most pronounced in relation to the stimulating effects of TP03. This was due to a higher selectivity of the TP31 antagonist with respect to the cAMP-dependent signaling cascades, predominantly activated by TP03 and realized through Gs proteins. PP17 inhibited stimulatory effects of hCG and TP03 on the adenylyl cyclase activity to a similar extent but was less active compared to TP31. Upon intratesticular (10 mg/kg) or intraperitoneal (45 mg/kg) administration to male rats, TP31 and PP17 decreased the baseline plasma level of testosterone and inhibited the testosterone production stimulated by hCG (100 IU/rat); the inhibitory effect of TP31 was much more pronounced than that of PP17. PP10 exhibited a weaker antagonistic activity than TP31 and PP17 in the in vitro and in vivo conditions. The data obtained indicated that TP31, the most active functional antagonist among the studied compounds, binded to the allosteric site of the LH receptor, made it less accessible to allosteric agonists and impairs the hormonal signal transduction through the LH receptor. This suggests the prospects of the development of TP31-based inhibitors of LH-dependent pathways and steroidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Riccetti L., De Pascali F., Gilioli L., Potì F., Giva L.B., Marino M., Tagliavini S., Trenti T., Fanelli F., Mezzullo M., Pagotto U., Simoni M., Casarini L. 2017. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reprod. Biol. Endocrinol. 15 (1), 2. https://doi.org/10.1186/s12958-016-0224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Riccetti L., Yvinec R., Klett D., Gallay N., Combarnous Y., Reiter E., Simoni M., Casarini L., Ayoub M.A. 2017. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci. Rep.7 (1), 940. https://doi.org/10.1038/s41598-017-01078-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shpakov A. O. 2018. Gonadotropiny – ot teorii k klinicheskoy praktike (Gonadotropins: From theory to clinical practice). SPb.: Polytech Press.

  4. van de Lagemaat R., Timmers C.M., Kelder J., van Koppen C., Mosselman S., Hanssen R.G. 2009. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum. Reprod. 24 (3), 640–648. https://doi.org/10.1093/humrep/den412

    Article  CAS  PubMed  Google Scholar 

  5. Nataraja S.G., Yu H.N., Palmer S.S. 2015. Discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors. Front. Endocrinol. (Lausanne). 6, 142. https://doi.org/10.3389/fendo.2015.00142

    Article  Google Scholar 

  6. Shpakov A.O., Dar’in D.V., Derkach K.V., Lobanov P.S. 2014. The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase systems in the rat testes. Dokl. Biochem. Biophys.456 (1), 104–107. https://doi.org/10.1134/S1607672914030065

    Article  CAS  PubMed  Google Scholar 

  7. Derkach K.V., Dar’in D.V., Bakhtyukov A.A., Loba-nov P.S., Shpakov A.O. 2016. In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor. Biochem. (Moscow).Suppl. Ser. A: Membr. Cell. Biol.10 (4), 294–300. https://doi.org/10.1134/S1990747816030132

    Article  Google Scholar 

  8. Derkach K.V., Legkodukh A.S., Dar’in D.V., Shpakov A.O. 2017. The stimulating effect of thienopyrimidines structurally similar to Org 43553 on adenylate cyclase activity in the testes and on testosterone production in male rats. Cell Tissue Biol.11 (1), 73–80.https://doi.org/10.1134/S1990519X17010035

  9. Bakhtyukov A.A., Derkach K.V., Dar’in D.V., Shpakov A.O. 2019. Conservation of steroidogenic effect of the low-molecular-weight agonist of luteinizing hormone receptor in the course of its long-term administration to male rats. Dokl. Biochem. Biophys.484 (1), 78–81.https://doi.org/10.1134/S1607672919

  10. Bakhtyukov A.A., Derkach K.V., Dar’in D.V., Stepochkina A.M., Shpakov A.O. 2019. A low molecular weight agonist of the luteinizing hormone receptor stimulates adenylyl cyclase in the testicular membranes and steroidogenesis in the testes od rats with type 1 diabetes. Biochem. (Moscow).Suppl. Ser A: Membr. Cell. Biol.13 (4), 301–309. https://doi.org/10.1134/S1990747819040032

    Article  Google Scholar 

  11. Xing W., Lin H., Li Y., Yang D., Wang W., Zhang Q. 2015. Is the GnRH antagonist protocol effective at preventing OHSS for potentially high responders undergoing IVF/ICSI? PLoS One.10 (10), e0140286. https://doi.org/10.1371/journal.pone.0140286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morgante G., Massaro M.G., Di Sabatino A., Cappelli V., De Leo V. 2018. Therapeutic approach for metabolic disorders and infertility in women with PCOS. Gynecol. Endocrinol.34 (1), 4–9. https://doi.org/10.1080/09513590.2017.1370644

    Article  CAS  PubMed  Google Scholar 

  13. Engel J.B., Schally A.V. 2007. Drug insight: Clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone. Nat. Clin. Pract. Endocrinol. Metab.3 (2), 157–167. https://doi.org/10.1038/ncpendmet0399

    Article  CAS  PubMed  Google Scholar 

  14. Godbole A.M., Njar V.C. 2011. New insights into the androgen-targeted therapies and epigenetic therapies in prostate cancer. Prostate Cancer. 2011, 918707. https://doi.org/10.1155/2011/918707

  15. Lizneva D., Gavrilova-Jordan L., Walker W., Azziz R. 2016. Androgen excess: Investigations and management. Best Pract. Res. Clin. Obstet. Gynaecol.37, 98–118. https://doi.org/10.1016/j.bpobgyn.2016.05.003

    Article  PubMed  Google Scholar 

  16. Heitman L.H., Narlawar R., de Vries H., Willemsen M.N., Wolfram D., Brussee J., Ijzerman A.P. 2009. Substituted terphenyl compounds as the first class of low molecular weight allosteric inhibitors of the luteinizing hormone receptor. J. Med. Chem.52 (7), 2036–2042. https://doi.org/10.1021/jm801561h

    Article  CAS  PubMed  Google Scholar 

  17. Heitman L.H., Kleinau G., Brussee J., Krause G., Ijzerman A.P. 2012. Determination of different putative allosteric binding pockets at the lutropin receptor by using diverse drug-like low molecular weight ligands. Mol. Cell. Endocrinol.351 (2), 326–336. https://doi.org/10.1016/j.mce.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  18. Turcu A.F., Kumar S., Neumann S., Coenen M., Iyer S., Chiriboga P., Gershengorn M.C., Bahn R.S. 2013. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J. Clin. Endocrinol. Metab.98 (5), 2153–2159. https://doi.org/10.1210/jc.2013-1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neumann S., Nir E.A., Eliseeva E., Huang W., Marugan J., Xiao J., Dulcey A.E., Gershengorn M.C. 2014. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology.155 (1), 310–314. https://doi.org/10.1210/en.2013-1835

    Article  CAS  PubMed  Google Scholar 

  20. Anderson R.C., Newton C.L., Millar R.P. 2019. Small molecule follicle-stimulating hormone receptor agonists and antagonists. Front. Endocrinol. (Lausanne).9, 757. https://doi.org/10.3389/fendo.2018.00757

    Article  Google Scholar 

  21. Bakulina O.Yu., Ivanov A.Yu., Dar’in D.V., Lobanov P.S. 2014. New transformations of 2-methylsulfanyl-4,6-dichloropyrimidine-5-carbaldehyde involving enamines: Synthesis of condensed azines. Mendeleev Commun.24, 163–164. https://doi.org/10.1016/j.mencom.2014.04.013

    Article  CAS  Google Scholar 

  22. Ryazanov S.G., Selivanov S.I., Dar’in D.V., Lobanov P.S., Potekhin A.A. 2008. Chemoselective cyclocondensation of α-acylacetamidines with 2-methylsulfanyl-4,6-dichloropyrimidine-5-carbaldehyde. Russ. J. Org. Chem.44 (2), 288–291.

    Article  CAS  Google Scholar 

  23. Heitman L.H., Ijzerman A.P. 2008. G protein-coupled receptors of the hypothalamic-pituitary-gonadal axis: A case for Gnrh, LH, FSH, and GPR54 receptor ligands. Med. Res. Rev.28 (6), 975–1011. https://doi.org/10.1002/med.20129

    Article  CAS  PubMed  Google Scholar 

  24. Neumann S., Eliseeva E., McCoy J.G., Napolitano G., Giuliani C., Monaco F., Huang W., Gershengorn M.C. 2011. A new small-molecule antagonist inhibits Graves’ disease antibody activation of the TSH receptor. J. Clin. Endocrinol. Metab.96 (2), 548–554. https://doi.org/10.1210/jc.2010-1935

    Article  CAS  PubMed  Google Scholar 

  25. Marcinkowski P., Hoyer I., Specker E., Furkert J., Rutz C., Neuenschwander M., Sobottka S., Sun H., Nazare M., Berchner-Pfannschmidt U., von Kries J.P., Eckstein A., Schülein R., Krause G. 2019. A new highly thyrotropin receptor-selective small-molecule antagonist with potential for the treatment of Graves’ orbitopathy. Thyroid.29 (1), 111–123. https://doi.org/10.1089/thy.2018.0349

    Article  CAS  PubMed  Google Scholar 

  26. Ayoub M.A., Yvinec R., Jégot G., Dias J.A., Poli S.M., Poupon A., Crépieux P., Reiter E. 2016. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Mol. Cell. Endocrinol.436, 10–22. https://doi.org/10.1016/j.mce.2016.07.013

    Article  CAS  PubMed  Google Scholar 

  27. Lindsley C.W., Emmitte K.A., Hopkins C.R., Bridges T.M., Gregory K.J., Niswender C.M., Conn P.J. 2016. Practical strategies and concepts in GPCR allosteric modulator discovery: Recent advances with metabotropic glutamate receptors. Chem. Rev.116 (11), 6707–6741. https://doi.org/10.1021/acs.chemrev.5b00656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foster D.J., Conn P.J. 2017. Allosteric modulation of GPCRs: New insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron.94 (3), 431–446. https://doi.org/10.1016/j.neuron.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no. 19-75-20122). NMR studies were performed using the equipment of the SPbSU Resource Center Magnetic Resonance Research Methods, high-resolution mass spectra were obtained on the equipment of the SPbSU Resource Center Methods for Analysis of the Chemical Substance Composition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Ethics declarations

The authors state that there is no conflict of interest.

All procedures were carried out in accordance with the rules developed by the Bioethics Committee of the IEPB RAS (15.02.2018) and with the rules and requirements set out in the documents European Communities Council Directive 1986 (86/609/EEC) and Guide for the Care and Use of Laboratory Animals.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkach, K.V., Dar’in, D.V. & Shpakov, A.O. Low-Molecular-Weight Ligands of Luteinizing Hormone Receptor with the Activity of Antagonists. Biochem. Moscow Suppl. Ser. A 14, 223–231 (2020). https://doi.org/10.1134/S1990747820030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820030034

Keywords:

Navigation