Skip to main content
Log in

SPIN TRANSITION IN HETEROANION COMPLEXES IN THE Fe2+-4-AMINO-1,2,4-TRIAZOLE–\(\text{NO}^{-}_3\)\(\text{SO}^{2-}_4\) SYSTEM

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Magnetic and thermodynamic properties of heteroanion complex compounds in the Fe2+–ATrz–\(\text{NO}^{-}_3\)\(\text{SO}_4^{2-}\) (ATrz = 4-amino-1,2,4-triazole) system are studied. The Fe(ATrz)3(NO3)2(1–x)(SO4)nH2O phases are synthesized. According to magnetochemical and calorimetry data, Fe(ATrz)3(NO3)2(1–x)(SO4)x samples demonstrate a spin transition above room temperature while the compound′s color is changed from pink in the low-spin state to white in the high-spin state. According to calorimetry data, the spin transition in Fe(ATrz)3(NO3)2(1–x)(SO4)nH2O phases is a first-order phase transition with hysteresis effects. It is shown that the temperature and the nature of the spin transition can be fine-tuned by synthesizing heteroanion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Spin Crossover in Transition Metal Compounds / Eds. P. Gütlich and H. A. Goodwin. Topics in Current Chemistry. Vols. 233–235. Springer: Berlin, 2004.

  2. Spin-Сrossover Materials Properties and Applications / Ed. M. A. Halcrow. J. Wiley & Sons: U.K, 2013.

  3. P. Gütlich, A. B. Gaspar, and Y. Garcia. Beilstein J. Org. Chem., 2013, 9, 342–391.

  4. A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi. Chem. Soc. Rev., 2011, 40, 3313–3335.

  5. A. B. Koudriavtsev and W. Linert. J. Struct. Chem., 2010, 51(2), 335–365.

  6. O. Kahn and M. C. Jay. Science, 1998, 279, 44–48.

  7. K. S. Kumar and M. Ruben. Coord. Chem. Rev., 2017, 346, 176–205.

  8. S. V. Larionov. Russ. J. Coord. Chem., 2008, 34, 237–250.

  9. G. V. Romanenko, S. V. Fokin, D. P. Pishchur, A. S. Bogomyakov, and V. I. Ovcharenko. J. Struct. Chem., 2019, 60(10), 1630–1634.

  10. V. A. Morozov. J. Struct. Chem., 2016, 57(8), 1493–1498.

  11. A. A. Starikova, E. A. Metelitsa, and A. G. Starikov. J. Struct. Chem., 2019, 60(8), 1219–1225.

  12. V. A. Varnek. J. Struct. Chem., 1994, 35(6), 834–841.

  13. M. A. Halcrow. Chem. Lett., 2014, 43, 1178–1188.

  14. S. Brooker. Chem. Soc. Rev., 2015, 44, 2880–2892.

  15. M. B. Bushuev. Phys. Chem. Chem. Phys., 2018, 20, 5586–5590.

  16. M. A. Halcrow. Crystals, 2016, 6, 58.

  17. M. A. Halcrow. Chem. Soc. Rev., 2011, 40, 4119–4142.

  18. L. G. Lavrenova and S. V. Larionov. Koord. Khim., 1998, 24, 403–420.

  19. J. G. Haasnoot, G. Vos, and W. L. Groeneveld. Z. Naturforsch., B: Anorg. Chem., Org. Chem., 1977, 32, 1421–1430.

  20. O. Kahn and E. Codjovi. Philos. Trans. R. Soc., A, 1996, 354, 359–379.

  21. J. G. Haasnoot. Coord. Chem. Rev., 2000, 200202, 131–185.

  22. P. J. van Köningsbruggen. Top. Curr. Chem., 2004, 233, 123–149.

  23. Y. Garcia, V. Niel, M. C. Muñoz, and J. A. Real. Top. Curr. Chem., 2004, 233, 229–257.

  24. O. Roubeau. Chem. Eur. J., 2012, 18, 15230–15244.

  25. A. Grosjean, N. Daro, B. Kauffmann, A. Kaiba, J.-F. Letard, and P. Guionneau. Chem. Commun., 2011, 47, 12382–12384.

  26. M. B. Bushuev, L. G. Lavrenova, V. N. Ikorskii, Y. G. Shvedenkov, V. A. Varnek, L. A. Sheludyakova, and S. V. Larionov. Russ. J. Coord. Chem., 2004, 30, 284–290.

  27. L. G. Lavrenova, E. V. Kirillova, V. N. Ikorskii, Yu. G. Shvedenkov, V. A. Varnek, L. A. Sheludyakova, and S. V. Larionov. Russ. J. Coord. Chem., 2001, 27, 46–50.

  28. O. Roubeau, J. M. Alcazar Gomez, E. Balskus, J. J. A. Kolnaar, J. G. Haasnoot, and J. Reedijk. New J. Chem., 2001, 25, 144–150.

  29. M. B. Bushuev, L. G. Lavrenova, Y. G. Shvedenkov, V. A. Varnek, L. A. Sheludyakova, V. V. Volkov, and S. V. Larionov. Russ. J. Coord. Chem., 2008, 34, 190–194.

  30. G. A. Berezovskii, M. B. Bushuev, D. P. Pishchur, and L. G. Lavrenova. J. Therm. Anal. Calorim., 2008, 93, 999–1002.

  31. O. G. Shakirova, M. Grunert, D. Y. Naumov, P. Gütlich, and L. G. Lavrenova. J. Struct. Chem., 2010, 51(1), 45–52.

  32. G. A. Berezovskii, O. G. Shakirova, Y. G. Shvedenkov, and L. G. Lavrenova. Russ. J. Phys. Chem. A, 2003, 77, 1054–1058.

  33. L. G. Lavrenova, O. G. Shakirova, V. N. Ikorskii, V. A. Varnek, L. A. Sheludyakova, and S. V. Larionov. Russ. J. Coord. Chem., 2003, 29, 22–27.

  34. O. Roubeau, M. Castro, R. Burriel, J. G. Haasnoot, and J. Reedijk. J. Phys. Chem. B, 2011, 115, 3003–3012.

  35. A. Grosjean, P. Négrier, P. Bordet, C. Etrillard, D. Mondieig, S. Pechev, E. Lebraud, J.-F. Létard, and P. Guionneau. Eur. J. Inorg. Chem., 2013, 2013, 796–802.

  36. N. V. Bausk, S. B. Érenburg, L. N. Mazalov, L. G. Lavrenova, and V. N. Ikorskii. J. Struct. Chem., 1994, 35(4), 509–516.

  37. M. B. Bushuev, L. G. Lavrenova, Y. G. Shvedenkov, A. V. Virovets, L. A. Sheludyakova, and S. V. Larionov. Russ. J. Inorg. Chem., 2007, 52, 46–51.

  38. V. A. Varnek, L. G. Lavrenova, and V. A. Shipachev. J. Struct. Chem., 1996, 37(1), 165–169.

  39. L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, I. M. Oglezneva, and S. V. Larionov. Koord. Khim., 1986, 12, 207–215.

  40. M. B. Bushuev, D. P. Pishchur, I. V. Korolkov, and K. A. Vinogradova. Phys. Chem. Chem. Phys., 2017, 19, 4056–4068.

  41. K. A. Vinogradova, D. P. Pishchur, I. V. Korolkov, and M. B. Bushuev. Inorg. Chem. Commun., 2019, 105, 82–85.

  42. Y. G. Shvedenkov, V. N. Ikorskii, L. G. Lavrenova, V. A. Drebushchak, and N. G. Yudina. J. Struct. Chem., 1997, 38(4), 578–584.

  43. L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, I. M. Oglezneva, and S. V. Larionov. J. Struct. Chem., 1993, 34(6), 960–965.

  44. O. G. Shakirova, Y. G. Shvedenkov, D. Y. Naumov, N. F. Beizel′, L. A. Sheludyakova, L. S. Dovlitova, V. V. Malakhov, and L. G. Lavrenova. J. Struct. Chem., 2002, 43(6), 601–607.

  45. V. A. Varnek and L.G. Lavrenova. J. Struct. Chem., 1994, 35(6), 842–850.

  46. V. A. Varnek, L. G. Lavrenova, and S. A. Gromilov. J. Struct. Chem., 1997, 38(6), 585–592.

  47. O. G. Shakirova, L. G. Lavrenova, Y. G. Shvedenkov, V. N. Ikorskii, V. A. Varnek, L. A. Sheludyakova, V. L. Varand, T. A. Krieger, and S. V. Larionov. J. Struct. Chem., 2000, 41(5), 790–797.

  48. L. G. Lavrenova and O. G. Shakirova. Eur. J. Inorg. Chem., 2013, 2013, 670–682.

  49. K. Drabent, R. Bronisz, and M. F. Rudolf. In: International Conference on the Applications of the Mössbauer Effect (ICAME-95): Rimini (Italy), 10–16 September, 1995. Italian Physical Society: Bologna, 1996, 7–10.

  50. V. P. Sinditskiy, V. I. Sokol, A. Fogelzang, M. D. Dutov, V. V. Serushkin, M. A. Poray-Koshits, and B. S. Svetlov. Zh. Neorg. Khim., 1987, 32, 1950–1955.

  51. A. Grosjean, N. Daro, S. Pechev, C. Etrillard, G. Chastanet, and P. Guionneau. Eur. J. Inorg. Chem., 2018, 2018, 429–434.

  52. K. A. Vinogradova, D. P. Pishchur, V. Y. Komarov, L. G. Lavrenova, and M. B. Bushuev. Inorg. Chim. Acta, 2020, 506, 119560.

Download references

Funding

The study was financially supported by the Russian Science Foundation (project No. 18-73-00277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Vinogradova.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, K.A., Andreeva, A.Y., Pishchur, D.P. et al. SPIN TRANSITION IN HETEROANION COMPLEXES IN THE Fe2+-4-AMINO-1,2,4-TRIAZOLE–\(\text{NO}^{-}_3\)\(\text{SO}^{2-}_4\) SYSTEM. J Struct Chem 61, 1380–1389 (2020). https://doi.org/10.1134/S0022476620090048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620090048

Keywords

Navigation